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Disclaimer 

The information and views set out in this publication are those of the author(s) and do not necessarily 

reflect the official opinion of the European Commission. The Commission does not guarantee the 

accuracy of the data included in this study. Neither the Commission nor any person acting on the 

Commission’s behalf may be held responsible for the use, which may be made of the information 

contained therein.   
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Executive Summary 

The GreenDIGIT project is a European initiative aimed at reducing the environmental footprint of 

Research Infrastructures (RIs) and digital services by enhancing energy efficiency and sustainability. As 

digital infrastructures continue to grow in scale and complexity, their energy consumption and carbon 

emissions have become pressing concerns. This report, Deliverable D4.1, provides a comprehensive 

State of the Art assessment of current technologies, methodologies, and policies that influence the 

sustainability of RIs, with a particular focus on metrics, optimization strategies, and software solutions 

for energy-efficient operations. 

The presented State of the Art (SotA) analysis provides a comprehensive overview of existing 

technologies, methodologies, and best practices for improving energy efficiency and enhancing the 

sustainability of scientific computing and digital RIs. It serves as a foundational study for WP4, WP5, 

and WP6, supporting the design, development, and deployment of GreenDIGIT’s sustainability-

oriented frameworks and tools addressing aspects such as energy efficiency, carbon-aware computing, 

sustainable data management, and research reproducibility.  

The deliverable assesses technological approaches and best practices across multiple infrastructure 

layers and the data collection and processing continuum, including cloud computing, high-throughput 

computing (HTC), 5G networks, and IoT environments, providing insights into how digital RIs can 

optimize their operations while minimizing energy consumption and carbon emissions. 

The document is structured around major technology domains that play a crucial role in reducing the 

environmental impact of digital infrastructures: metrics and monitoring, scientific workflow scheduling 

and optimisation, energy efficient networks, research data management, experimental research 

reproducibility, and overall sustainable software design practices. Each chapter provides an overview 

of existing technologies, ongoing research, and potential improvements that will shape the next-

generation sustainable RIs. 

The deliverable provides an extended analysis of existing practices for data centre energy efficiency 

and carbon footprint metrics collection and monitoring. The report outlines the European Energy 

Efficiency Directive (EED) reporting requirements for data centres, highlighting metrics such as Power 

Usage Effectiveness (PUE), renewable energy usage, and water efficiency. Existing monitoring 

infrastructures like EGI, Euroean Open Science Cloud (EOSC), and Prometheus are assessed for their 

applicability in federated research environments. The study identifies gaps in carbon emission tracking 

and energy efficiency reporting, proposing an energy data model for harmonized monitoring across 

different RIs. 

A key finding of this study is that RIs often lack the necessary tools and frameworks to effectively 

measure, monitor, and optimize their environmental impact. While significant advances have been 

made in energy-efficient computing, carbon-aware workload scheduling, and optimized data storage, 

their adoption remains fragmented. Scientific workflows are often executed without consideration of 

energy efficiency or carbon intensity, leading to excessive energy consumption and inefficiencies 

across HTC, high-performance computing (HPC), and cloud environments. Similarly, scientific data 

management strategies are not yet optimized for sustainability, with redundant data storage and 

inefficient replication practices contributing to unnecessary energy usage. 
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The presented analysis identified a need for GreenDIGIT to work on the development of federated 

environmental monitoring infrastructures, enabling RIs to track, report, and optimize their 

sustainability metrics in real-time. The project is also exploring energy-aware scheduling mechanisms, 

which will help align computational workloads with low-carbon energy availability. These 

advancements will significantly improve energy efficiency and carbon footprint management for 

scientific computing environments. 

The overview and analysis of sustainable software design principles and practices will help the project 

to implement these practices in scientific applications design and efficient use. By enhancing Virtual 

Research Environments (VREs) and integrating intelligent experiment reproducibility frameworks, the 

project ensures that research workflows and experimental data collection can be reused and 

optimized, reducing redundant computations and minimizing energy waste. 

Based on the presented State of the Art analysis, the deliverable provides key recommendations for 

energy efficiency and environmental sustainability of the future RIs: 

• Standardized environmental metrics reporting across all European RIs, leveraging federated 
monitoring platforms. 

• Adoption of energy-aware workload scheduling, integrating real-time carbon intensity data for 
optimized task execution. 

• Implementation of sustainable software design practices, including energy-efficient programming, 
hardware-aware optimization, and carbon-aware software execution. 

• Enhancing scientific experiment reproducibility through low-impact digital experiment 
frameworks, reducing redundant computational efforts and improving efficiency of research data 
management, in particular compliance with the Findable, Accessible, Interoperable, and Reusable 
(FAIR) data principles. 
 

The report also touches on the need to address energy efficiency of the growing use of Generative AI 

(GenAI) in future scientific research. 

The presented analysis and identified gaps and research and development topics will provide a basis 

for GreenDIGIT to develop and validate prototype necessary solutions and services, helping European 

RIs transition to greener, more energy-efficient operations. These efforts will contribute to reducing 

the environmental impact of scientific computing while maintaining high-performance research 

capabilities. 
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1 Introduction 

Lowering the environmental impact of digital services and technologies has to become a priority for 

both the operation of existing digital services and the design of future digital infrastructures. Indeed, 

digital infrastructures are responsible for 5 to 9 % of the world’s total electricity use and more than 2 

% of global emissions. In 2018, data centres accounted for 2.7 % of the electricity demand in the EU-

28. Within the Union, data centres accounted for 2.7 % of electricity demand in 2018 and will reach 

3.21 % by 2030 if development continues on the current trajectory1. 

The GreenDIGIT project2, funded in the Horizon Europe RI programme runs between 2024-2026 to 

research, prototype and validate various technical and non-technical approaches and tools that digital 

service providers within RI communities can adopt to lower their environmental impact.  

GreenDIGIT will deliver contributions and will move beyond State of the Art in 3 areas:  

1. Policy and Governance: Establishing frameworks for measuring and managing the environmental 
impact of digital services through the full RI lifecycle. 

2. Resource Efficiency: Develop software tools, frameworks and infrastructures that can support 
digital service providers in measuring and lowering their environmental impact by optimising 
operation. 

3. Skills and Collaboration: Run community building and training programmes for RI provider and user 
communities to increase their understanding and skills about environmental impact lowering 
techniques and to foster cooperation among RIs around such topics. 

This deliverable is a SotA study covering the 2nd area from this list. A separate milestone document, 

titled “MS8.1 Study of existing policies and regulations” provides SotA for area 1, and another 

deliverable, titled “D10.2 Definition of the competences and skills for sustainability and environmental 

impact awareness and a set of training modules” already offer solutions for area 3.  

Chapter 2 of the document details the GreenDIGIT contributions to area 2, by positioning the various 

software tools/frameworks/infrastructures of the project into a single architecture. This architecture, 

and the various areas it covers serves as a basis for the chapters of this SotA.  

The remainder of the deliverable is structured in the following way. Chapter 3 provides an extensive 

overview of the metrics for data centre environmental sustainability. Chapter 4 is focused on the 

scheduling approaches for green optimisation of scientific workflows. Chapter 5 provides existing 

practices, approaches and used metrics for monitoring the energy efficiency of networks, 5G 

infrastructure, IoT and mobile environment. Chapter 6 is covering sustainability aspects in research 

infrastructure for experimental research including sustainability in Virtual RIs and experiment 

reproducibility metadata formats. Chapter 7 provides an overview of the sustainable software design 

practices that are important for scientific software and applications. This section also provides an 

overview of the best practices recommended by the leading cloud providers Amazon Web Services 

(AWS) and Microsoft Azure that are defined as a part of their Well-Architected Framework. Section 8 

analyses data management aspects for both supporting environmental research and ensuring energy 

 

1 Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on energy 
efficiency and amending Regulation: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=OJ%3AJOL_2023_231_R_0001&qid=1695186598766  
2 GreenDIGIT Project: https://greendigit-project.eu/   

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AJOL_2023_231_R_0001&qid=1695186598766
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AJOL_2023_231_R_0001&qid=1695186598766
https://greendigit-project.eu/
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efficiency of the data management infrastructure; the latter is important for research and for industry 

that both face challenges with collecting, storing and processing huge amounts of data. Chapter 9 

touches on the need to address energy efficiency of the growing use of GenAI in future scientific 

research. The final section provides a summary and vision for future implementation of 

recommendations that come out of the presented State of the Art analysis. 
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2 GreenDIGIT software solutions 

In the second half of 2024, GreenDIGIT ran a comprehensive landscape analysis3 about digital RI 

practices and identified needs and gaps in existing practices, approaches, metrics, and tools in 

addressing environmental sustainability and impact lowering. The landscape study revealed a gap in 

the existence and consistent adoption of software tools within IT centres and user communities to 

track their environmental footprint and to optimise their operations to lower such impacts.  

The GreenDIGIT project aims to fill this gap by providing solutions to energy-related impact 

minimisation. The focus is on energy, because the landscape analysis showed that digital service 

providers consider energy consumption as their biggest polluting factor. The list below details the 

various technical solutions that GreenDIGIT started working on, and will deliver and validate in 2025-

26. These solutions are also presented in Figure 1 in an architecture that positions them towards.  

1. Metrics collection infrastructure to support RIs in the collection, aggregation and analysis of 
environmental impact-related metrics of their digital services. The infrastructure should be 
capable to work across the spectrum of equipment used within digital RIs (network-edge-IoT-
cloud-HTC-HPC). (Lead: EGI, contributions from EGI, SLICES, SoBigData, EBRAINS) 

2. Federated data management infrastructure (DMI) to support RIs in the optimal use of their storage 
and network equipment by optimising data transfer, data replication and data storage instructions 
within federated environments. (Lead: CNR) 

3. Digital scientific experiment4 reproducibility infrastructure to support RIs in the registration, 
lookup and re-play of previously conducted digital experiments, eliminating/minimising the need 
of re-executing scientific calculations that have been already performed in the past. (CNR, TUM) 

4. Environments and frameworks that provide integrated support for users to the lowering of the 
environmental footprint of their activities on digital RIs, by building on, and expanding the 
solutions from the previous 1, 2, 3 points. Particularly: Making informed decisions for resource 
allocation using data from the metrics infrastructure (area 1); Minimising data transfers and 
storage with the use of the federated data infrastructure (area 2); Offering scientific reproducibility 
with minimised computational impact (area 3). The implementations foreseen within this area are: 
4.1. An extension to the AI4OS AI platform that can optimise the execution of AI model training 

and inference tasks on federated cloud-HPC infrastructures. (IFCA-CSIC) 
4.2. An extension to the DIRAC middleware that can run massively parallel applications on 

federated High Throughput Cluster resources. (CNRS) 
4.3. A JupyterHub environment that integrates with the rest of the ecosystem and can serve as a 

front-end towards users and user communities to perform computational analysis on digital 
RI services, with minimal impact on the environmental. (TUM, UvA) 

4.4. A data centre automation service that monitors the use of computers, the trend of incoming 
user requests and based on these switches HW on/off to lower energy consumption without 
causing Quality-of-Service failures towards the users. (SZTAKI) 

4.5. Workload manager (resource broker) that can choose the most suitable type of HW resources 
based on job characteristics inside one compute centre or among multiple centres, 
considering the environmental impact and expected time of completion of compute tasks. 
(E.g. for compute-heavy, I/O heavy, memory heavy tasks) (CESNET) 

 

3 Deliverable 3.1 RIs Landscape review, best practices analysis and identification of needs within the ESFRI RIs 
4 The word ‘experiment’ in this context is used for any type/form of data analysis application that runs on 
digital infrastructures. Experiments can exist in the form of workflows, VMs, containers, compute jobs, etc. 
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4.6. Batch scheduler that can delay the execution of jobs to periods when the energy used by the 
centre is lower in carbon content, making the best compromise between time of completion 
and environmental impact. (CESNET) 

 

 

Figure 1. GreenDIGIT software solutions for lower environmental impact (green boxes with orange labels).  
See the description of each box above. 

The next sections of this document go into the SotA review of the context of these GreenDIGIT 

developments. 
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3 Metrics for data centre environmental sustainability 

3.1 European Regulation for Data Centre Environmental 

Sustainability Reporting 

In the evolving landscape of data centre management, an increasing emphasis is placed on the 

intersection of sustainability and compliance with government regulations. As the pace of digital 

transformation continues to accelerate, it fuels an increasing demand for data centres, culminating in 

heightened energy consumption, carbon emissions, and water usage. However, in the face of these 

challenges, various government directives around the world have come to the forefront as key 

regulatory frameworks designed to manage these environmental impacts. The most relevant for 

GreenDIGIT in this respect is the EED5. According to the EED: 

• By 15th of May 2024 and annually thereafter, Member States shall require owners and operators 
of data centres with a non-redundant rated electrical load of at least 500 kW to (1) monitor and 
report various energy performance metrics. These metrics include energy consumption, power 
utilization, temperature, heat utilization, and the use of renewable energy AND (2) to implement 
energy recovery facilities, aiming for up to 20 % energy recovery, which can be achieved by 
connecting to district heating networks.  

• Newly constructed data centres are expected to achieve a PUE value of 1.2. Additionally, from 
2026, data centres must source all their energy from renewable sources, either physically or 
virtually. 

The EC database where the data centres have to report is already available6. Some of the countries 

already have data centres listed, and this includes some academic data centres too (e.g. CNRS from 

France as shown in the screenshot in Figure 2). This reporting requirement will gradually broaden to 

additional countries and data centres too, and will penetrate more deeply into the academic data 

centre community (at least to the large centres). Therefore studying the metrics that the EED demands 

can serve as a good baseline for SotA metrics.  

 

5Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on energy 
efficiency and amending Regulation (EU) 2023/955 (recast) (Text with EEA relevance): https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AJOL_2023_231_R_0001&qid=1695186598766  
6European database on data centres: https://ec.europa.eu/energy-climate-plans-
reporting/ePlatform/reportENER/screen/home   

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AJOL_2023_231_R_0001&qid=1695186598766
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AJOL_2023_231_R_0001&qid=1695186598766
https://ec.europa.eu/energy-climate-plans-reporting/ePlatform/reportENER/screen/home
https://ec.europa.eu/energy-climate-plans-reporting/ePlatform/reportENER/screen/home
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The EED reporting obligations encompass a total of 24 performance indicators, which can be 

categorized into three main areas: 

1. AREA: Energy and sustainability indicators: 

1. Installed information technology power demand (PDIT, kW) 

2. Data centre total floor area (SDC, m²) 

3. Data centre computer room floor area (SCR, m²) 

4. Total energy consumption (EDC, kWh) 

5. Total energy consumption of IT equipment (EIT, kWh) 

6. Electrical grid functions  

7. Average battery capacity (‘CBtG’, in kW)  

8. Total water input (‘WIN’, in cubic metres) 

9. Total potable water input (‘WIN-POT’, in cubic metres)  

10.  Waste heat reused (‘EREUSE’, in kWh)  

11.  Average waste heat temperature (‘TWH’, in degree Celsius)  

12.  Average setpoint information technology equipment intake air temperature (‘TIN’, in 

degree Celsius)  

13.  Types of refrigerants used in the cooling and air conditioning equipment  

14.  Cooling degree days (‘CDD’, in degree-days)  

15.  Total renewable energy consumption (‘ERES-TOT’, in kWh)  

16.  Total renewable energy consumption from Guarantees of Origin (‘ERES-GOO’, in kWh)  

17.  Total renewable energy consumption from Power Purchasing Agreements (‘ERES-PPA’, 

in kWh) 

18.  Total renewable energy consumption from on-site renewables (‘ERES-OS’, in kWh) 

 

Figure 2 The EC reporting portal 
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2. AREA: ICT capacity indicators 

1. ICT capacity for servers (‘CSERV’) 

2. ICT capacity for storage equipment (‘CSTOR’, in petabytes) 

3. AREA: Data traffic indicators 

1. Incoming traffic bandwidth (‘BIN’, in gigabytes per second)  

2. Outgoing traffic bandwidth (‘BOUT’, in gigabytes per second)  

3. Incoming data traffic (‘TIN’, in exabytes) 

4. Outgoing data traffic (‘TOUT’, in exabytes) 

Notice that while the regulation emphasizes energy-related metrics, it does not explicitly mandate the 

reporting of total CO₂ emissions. However, by reporting energy consumption and the proportion of 

renewable energy used, data centres provide data that can be used to estimate their carbon footprint. 

Therefore, while direct reporting of total CO₂ emissions is not explicitly required, the reported energy 

metrics contribute to assessing the environmental impact of data centre operations. Annex III of EED 

specifies calculation methodologies for the following sustainability indicators that shall be calculated 

based on the information and key performance indicators communicated to the European database 

on data centres:  

• PUE 

• Water Usage Effectiveness (WUE) 

• Energy Reuse Factor (ERF) 

• Renewable Energy Factor (REF) 
 

3.2 Metrics infrastructures for federated environments 

This section provides an overview of those existing software infrastructures that can be considered a 

baseline for the ‘GreenDIGIT Environmental Metrics Infrastructure’.   

3.2.1  EGI Accounting system for metrics 

The EGI Accounting Repository and Portal is a service designed to collect, store, aggregate, and display 

information about the consumption of resources for High Throughput Compute jobs, VMs, and online 

storage providers. Providers supporting these types of services can connect their different service 

endpoints to the Accounting Service, which is centrally managed and will provide collected data about 

the service usage. 

Probes and sensors that gather accounting information according to certain data  formats are deployed 

locally at service providers, and subsequently a network of message brokers is forwarding data to a 

central Accounting Repository where the data are processed to generate various summaries and  views 

for display in the Accounting Portal7. 

Current metrics are ‘Number of VMs’ (exemplified in Figure 3), ‘Disk Used’, ‘Memory Used’, ‘Number 

of ProcessorHours’ (for Cloud), ‘Number of Jobs’, ‘CPU Efficiency’, ’Total CPU time used’, ‘Number of 

ProcessorHours’ (HTC) and they can be displayed by Resource Centres and various time units (from 

 

7EGI Accounting Portal: https://accounting.egi.eu/ 
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’Month’ to ‘Year’). A common format to report GPU use and utilization in infrastructure clouds has also 

been developed, and different components of the ecosystem are being extended to support it. 

From the GreenDIGIT perspective, specific probes and sensors that are implemented within the project 

partner premises could gather relevant environmental impact related metrics and feed them in the 

metrics framework at the Accounting Portal level to be consumed via API by a broad category of 

readers (platforms, tools, brokers, web pages). 

Features useful for the project and provided by the EGI Accounting framework are: 

• scalable for O(100) providers 

• scalable for O(10) consumers 

• can store historical values for the stored metrics 

• support for time-series queries 

• available GUI and read-write API 

• support for cumulative reporting of consumption of long-running workflows 
 

 

The framework is already used by GreenDIGIT partners that are also members of the EGI Federation 

and are contributing to the EGI infrastructure with HTC and Cloud resources. 

The Grid Usage Record and Cloud Usage Record are very similar to each other, and easily extensible. 

The consumer is not sensitive to extra attributes added by producers, making it forward-compatible 

with producers publishing additional consumption attributes, e.g. power, utilization rate, or carbon 

cost. 

Figure 3: Total number of VMs run by each EGI Federation Cloud centre during H2 2024 
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3.2.2  EOSC Accounting system for metrics 

The EOSC Accounting Service is a platform designed to efficiently collect, aggregate and exchange 

metrics across various infrastructures, providers and projects, all part of the EOSC EU Node8. 

The main functions of the platform are expressed by a REST API (Figure 4): 

• Accept input from several different resources 

• Define and support metrics 

• Database secure storage and intelligent aggregation of incoming data 

• Make aggregated data available to various clients 

• Search, filter, offer data for a specific time period. 
 

 

In addition, API resources must only be obtainable by authenticated clients. For this reason, every 

client who wants access API resources should be authenticated.  

 

8EOSC EU Node: https://open-science-cloud.ec.europa.eu/ 

 

Figure 4: Snapshot of EOSC Accounting system API structure 
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The platform also offers an intuitive User Interface9 (

Figure 5) that allows clients to interact effortlessly with the Accounting Service. Users can access and 

manage accounting data for specific time periods through a user-friendly dashboard. 

From the GreenDIGIT perspective, probes and sensors that are deployed at project partner premises 

could gather the relevant environmental impact related metrics and feed them in the metrics 

framework at the EOSC Accounting Service level to be consumed via API by a broad category of readers 

(platforms, tools, brokers, web pages). 

The framework is used by the GreenDIGIT partners that are also contributing with services to the EOSC 

EU Node platform. 

 

 

9EOSC Accounting service: https://ui-acc.open-science-cloud.ec.europa.eu/ 
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3.2.3  Prometheus 

Prometheus10 is an open-source monitoring and alerting system designed for time-series data. It is 

widely used for observability in cloud-native environments, especially with Kubernetes. Prometheus is 

already used for local metrics collection purposes at some of the GreenDIGIT members, including CSIC 

and SZTAKI.  

Key features of Prometheus are: 

• Time-Series Database (TSDB) – Stores numerical data over time, indexed by labels 

• Pull-Based Model – Prometheus scrapes metrics from instrumented services instead of waiting for 
them to push data 

• PromQL (Prometheus Query Language) – Enables powerful queries and analysis of time-series data 

• Multi-Dimensional Data Model – Uses labels (key-value pairs) to categorize and filter metrics 

• Alerting & Visualization – Works with Alertmanager for notifications and integrates with Grafana 
for graphical dashboards 

• Service Discovery – Dynamically detects targets using Kubernetes, Consul, or static configurations 

The typical use cases where Prometheus is applied are: 

• Infrastructure monitoring (CPU, memory, disk usage) 

• Tracking application performance (API response times, request counts) 

• Observability in microservices and Kubernetes clusters 

• Generating alerts for anomalies (e.g. high error rates) 

Some of the most common Prometheus metrics are:  

• Counter – A cumulative metric (e.g. HTTP requests count) 

• Gauge – A metric that can go up or down (e.g. memory usage) 

 

10Prometheus: https://prometheus.io/  

Figure 5: EOSC Accounting service UI 

https://prometheus.io/
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• Histogram – Distributes values into buckets (e.g. response time) 

• Summary – Similar to Histogram but includes quantiles 
Points of convergence already exist between Prometheus as the consumer service and the accounting 

system in EGI. There is an exporter service11, which accepts Cloud Accounting Records in the format 

used by EGI, and exports them as metrics into Prometheus. It can be operated either at site-level 

(before the message queue) or at consumer side (after the record is delivered through the message 

queue). 

3.3 Metrics collection and management of Cloud (OpenStack) and 

AI environments 

Since energy consumption is one of the main causes of the environmental impact of RIs, it is necessary 

to measure and control its use in these facilities. Beyond VMs, in a cloud computing environment, 

there is a large number of different hardware equipment that needs to be monitored. In addition, to 

optimize their use, it is necessary to measure them at different levels of abstraction, from the technical 

room to the VM deployed in the cloud. 

3.3.1  Metric collection at site level 

At this level of detail, which monitors the energy consumption of the entire infrastructure as a whole, 

it is necessary to instrument the electrical panels with power meters, and then monitor these sensors. 

3.3.2  Metric collection at node level 

Servers are the most energy-consuming hardware equipment. Broadly speaking, these have a set of 

sensors on the motherboard, which are managed by the Baseboard Management Controller (BMC), 

and can be queried through the Intelligent Platform Management Interface (IPMI). It should be noted 

that although the communication protocols are standard, the implementation of the BMC and the 

available sensors vary with the vendor and device model, based on the tests we have performed on a 

wide variety of hardware and in different data centres. Through this source, we can obtain the power 

consumption of the entire server, and in most cases broken down by power supply (PSU), fans, CPU, 

and memory. 

Using this approach, it is possible to obtain the total energy consumption per server, but in order to 

use this consumption to get a realistic carbon footprint, we need to correct this value with some 

correction factor, since for that server to work, more systems are needed, such as cooling, which also 

consumes a significant percentage of energy. To correct this measure, we can use a very well-known 

metric such as PUE12, since it relates the total consumption of the data centre with what is consumed 

by the IT equipment, which we can consider practically the sum of the power consumption of the 

compute servers. 

Another common way to measure power consumption, used by most existing software tools for this 

purpose, is to use Running Average Power Limit (RAPL)13. This is a feature of Intel/AMD's x86 CPUs, 

 

11https://github.com/goat-project/exporter  
12 https://datacenters.lbl.gov/sites/default/files/isc13_tuepaper.pdf  
13 https://hubblo-org.github.io/scaphandre-documentation/explanations/rapl-domains.html  

https://github.com/goat-project/exporter
https://datacenters.lbl.gov/sites/default/files/isc13_tuepaper.pdf
https://hubblo-org.github.io/scaphandre-documentation/explanations/rapl-domains.html
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manufactured after 2012, which allows setting limits on the power used by the CPU and other nearby 

components. Also allows, as feedback, to report the cumulative power consumption of various system-

on-chip (SoC) power domains. According to existing documentation, there are the following domains: 

Core/PP0, which encompasses the power consumed by the aggregate of CPU cores. Uncore/PP1: 

power consumed by components close to the CPU cores, which in most cases refers to the integrated 

GPU chipset. DRAM: power consumed by the memories. Package/PKG: includes “Core” and “Uncore”. 

In some documentation and some of our experiments, it seems to include “DRAM”, but this does not 

seem to be true in all cases. Finally, the specification also establishes a last domain, PSys, which 

measures the power consumption of the whole SoC, but in our tests, we have not found any CPU model 

that supports this domain, nor does the documentation detail what other components are taken into 

account, other than those already mentioned above in other domains. The RAPL power data is exposed 

to the operating system through the model-specific registers (MSR), read, in a Linux environment, 

through the power cap sensor, available in a kernel module. 

Due to security issues (CVE-2020-8694, CVE-2020-8695 / INTEL-SA-00389) it is not always possible in 

some cases to read these registers, or the values are not entirely accurate. The vulnerability exploits 

what are known as power-side channel attacks, which exploit the unprivileged access to RAPL Interface 

[1]. An attack called Platypus [2] can recover cryptographic keys from Intel Software Guard Extension 

(SGX) and the Linux Kernel, inferring such data from the CPU power consumption when computing 

them. To protect against such attacks there are several fixes, both software and hardware. First, the 

Linux kernel was updated as of v5.10 to make the registers accessible only to privileged users, but this 

update does not protect against a privileged attacker. Therefore, CPU manufacturers also acted: On 

the one hand, Intel released directly a microcode update14, so that when SGX is enabled, the 

measurement read from the CPU voltage regulators is filtered before being written to the registers. 

On the other hand, AMD disabled support for the power cap sensor in the Linux kernel, and after some 

patches by Google to the power cap sensor15, the registers became available again for the 17h family 

of AMD processors as of kernel version 5.8, and as of version 5.11 for the 19h family16. 

Finally, it should be considered that this last measurement method does not include all the equipment 

of the machine, and consequently, other hardware that is highly demanding in terms of power 

consumption, such as external GPUs, will not be taken into account. Therefore, when calculating the 

carbon footprint of a machine using this approach, it will be necessary to adjust the measurement 

value obtained by a corrective factor, to obtain a realistic power consumption and get a real carbon 

footprint at the end. This correction factor can be the ratio between the energy consumed by the 

server and the energy consumed by the CPU, or as defined by Patterson: IT Usage Effectiveness (ITUE) 

[3], or at data centre level, the energy consumed by the data centre divided by the energy consumed 

by the CPU, defined by Patterson as: Total Usage Effectiveness (TUE). 

3.3.3  Metric collection at VM level 

Finally, at this level of detail, we focus on the energy consumption of the main asset used by users and 

the platforms deployed on them in a cloud computing environment: VMs. This level of technicality is 

 

14 https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/running-average-power-limit-energy-reporting.html  
15 https://www.phoronix.com/news/Google-Zen-RAPL-PowerCap  
16 https://www.phoronix.com/news/AMD-RAPL-Linux-Now-19h  

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.phoronix.com/news/Google-Zen-RAPL-PowerCap
https://www.phoronix.com/news/AMD-RAPL-Linux-Now-19h
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more complex than the one described above since it is a virtual resource, which runs on a physical 

resource but is shared due to virtualization. Furthermore, there is no single alternative since we are 

introducing a new element into the system stack, such as hypervisors. The two major open-source 

virtualization platforms, KVM/QEMU and Xen Project take different approaches to address this 

problem. Starting with the latter, the Xen middleware exposes RAPL model-specific registers directly 

to the dom0 (host), and then this is replicated to all domUs (VMs), but based on our tests, it does not 

proportionally adjust the value based on the usage a VM makes of the hardware. This also leads to a 

security and isolation problem. Some publications like “Enabling power-awareness for the Xen 

hypervisor” [4]  propose adding power-awareness capabilities to the Xen dom0 to share the energy 

consumption of each machine proportionally to the hardware usage.  On the other hand, when 

virtualizing with KVM/QEMU, the VM does not have access to the RAPL registers, since this VM is just 

another process in the set of processes of the host operating system. For this purpose, there are 

already tools that allow the energy consumption per process to be calculated from the host machine. 

These types of tools are based on the fact that a multitasking CPU does timesharing, being able to 

execute only one process in each jiffy. Therefore, we can measure CPU consumption only when the 

process is running, counting the jiffies that said process uses. A tool that is based on this methodology 

is Scaphandre17, an open-source metrology agent dedicated to electric power and energy consumption 

metrics created by Hubblo, which has to be deployed on every host machine. In addition, it has been 

specifically designed to monitor the power consumption of VMs and containers running on a host 

machine, since it is capable of sharing said measurements with the VM or container itself18, through a 

hypervisor-shared file system in memory (virtiofs19), and this measurement can be read by a 

Scaphandre agent deployed inside the VM as if it were a physical machine. Virtiofs is a shared file 

system purposed for virtualization, it is specifically designed to take advantage of the locality of VMs 

and the hypervisor, using memory-shared pages. 

With Scaphandre, obtaining the power consumption of a VM is easy, but sharing that measurement 

across a variable multi-tenant computing environment (i.e., a cloud infrastructure operated by 

OpenStack) is non-trivial. First, since virtiofs is included in libvirt v6.2.0, it requires that all operating 

systems on both host machines and VMs be upgraded to at least version 21.04 (Hirsute Hippo) in the 

case of Ubuntu. Also, libvirt v6.2.0 requires at least version 22.0.0 of OpenStack Nova. On the 

management side, libvirt v6.2.0 requires at least OpenStack Nova version 22.0.020. Second, there is a 

lack of automation support in OpenStack to provide a feature in OpenStack Nova to manage virtiofs 

mounts, between VM and host. To create the shared filesystem, it is necessary to modify the XML 

definition of the KVM/QEMU VM. Nova fully manages this file, and only Nova can change it. There are 

some nova-specs proposing changes to support this feature 21. 

As previously mentioned, and since Scaphandre in its 1.0.0 version only obtains measurements from 

RAPL registers22, the VM's energy consumption does not include consumption from other specific 

hardware such as network cards or GPUs. Therefore, it is also necessary to apply a correction factor, 

 

17 https://hubblo-org.github.io/scaphandre-documentation/  
18 https://hubblo-org.github.io/scaphandre-documentation/explanations/how-scaph-computes-per-process-
power-consumption.html  
19 https://libvirt.org/kbase/virtiofs.html  
20 https://docs.openstack.org/nova/latest/reference/libvirt-distro-support-matrix.html  
21 https://specs.openstack.org/openstack/nova-specs/specs/2023.1/approved/virtiofs-scaphandre.html  
22 https://hubblo-org.github.io/scaphandre-documentation/explanations/host_metrics.html  

https://hubblo-org.github.io/scaphandre-documentation/
https://hubblo-org.github.io/scaphandre-documentation/explanations/how-scaph-computes-per-process-power-consumption.html
https://hubblo-org.github.io/scaphandre-documentation/explanations/how-scaph-computes-per-process-power-consumption.html
https://libvirt.org/kbase/virtiofs.html
https://docs.openstack.org/nova/latest/reference/libvirt-distro-support-matrix.html
https://specs.openstack.org/openstack/nova-specs/specs/2023.1/approved/virtiofs-scaphandre.html
https://hubblo-org.github.io/scaphandre-documentation/explanations/host_metrics.html
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the same as explained above for servers using RAPL as a measurement source, to obtain a real carbon 

footprint.  

Finally, it is also possible to obtain the energy consumption and utilization of an NVIDIA GPU, since 

these measurements are available in the card driver, and can be read with CLI tools such as nvidia-smi 

or through an API using one of the management services oriented to data centres such as NVIDIA 

DCGM23 

3.4 Metrics collection and management of High Throughput 

Compute environments 

Environmental sustainability is a strategic area of priority for many RIs that provide High Throughput 

Compute (HTC) environments and for their funding agencies. WLCG24 is one such international 

collaboration that is driving several activities aiming to estimate the energy consumption needed by 

the computing resources used by the LHC25 experiments and also to help partners reduce the carbon 

footprint of their computing needs. Several GreenDIGIT partners are also WLCG participants, therefore 

involved in the above mentioned activities (e.g. CNRS, CSIC, CESNET). 

The survey on RIs landscape review run by GreenDIGIT in 2024 highlighted that the energy has been 

considered by the respondents to have the primary environment impact, with water coming second. 

Therefore, the initial focus will be the capability to record and track the energy related environmental 

impact of HTC services and applications over time by choosing the right metrics that capture these 

aspects. 

While the possible frameworks to collect and aggregate these metrics are discussed in Chapter 5, this 

section briefly describes the methodology on metrics implementation and reporting suitable for the 

HTC computing resources. 

3.4.1 Metrics at site level 

Sites providing HTC services have similar hardware configurations to sites providing cloud services. 

Therefore, similar metrics are expected to be collected (see Chapter 4 for a  comprehensive list). 

One common metric is the PUE used to determine the energy efficiency of a data centre. While many 

sites are reporting PUE values, for missing sites a default value could be assumed until sites can update 

it to demonstrate improvement. The idea is to reward sites that make an effort to improve the 

infrastructure to be more environmentally friendly, while not penalising the ones that have no 

immediate means to do that. This is not just for PUE but also and more generally for carbon emissions. 

The more important aspect is to measure improvements, rather than absolute values that might be 

difficult to interpret. 

Along with power consumption, HTC sites are also measuring or expected to measure their carbon 

footprint (CFP). This is a more complex endeavour since it has to encompass all Scope 1, 2 and 3 

 

23 https://developer.nvidia.com/dcgm  
24 https://home.cern/science/computing/grid 
25 https://home.cern/science/accelerators/large-hadron-collider 

https://developer.nvidia.com/dcgm
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emissions26, but initially only scope 2 (mainly the operations) will be part of the measurement and 

monitoring. 

With this simplification in place an initial formula for CFP is E * U * C, where: 

• E is the total energy used (kWh) by site 

• U is the share of the HW (%) used for a specific workflow (parallel workflows at a time are assumed) 

• C is the Carbon content (kg/kWh) in energy provided. 

3.4.2 Metrics at worker node level 

A worker node is the basic computing unit responsible for executing individual tasks or jobs submitted 

to the HTC service.  

Historically the HTC specific payloads were submitted as single core workloads and while nowadays 

this changed, with several cores allocated per job, the most useful related metric is the power 

consumption per CPU core. Sites are expected to report this metric either as a single value, or as a list 

depending on the hardware involved. Alternatively, for non-reporting sites a default value could be 

provided, and this could act as an incentive for sites to update the numbers every time they improve. 

Ongoing work and investigations are taking place on how job-based measurements can be done and 

validated. For example the average power consumption per HS2327 can be estimated based on the 

hardware inventory at sites and the workload reported. Another possibility would consist of using the 

batch system capabilities to report back energy consumption and report it further upstream in the 

accounting tools, but this approach is in its early stages. 

All these metrics that characterise consumption by particular payloads can be evaluated by tools 

described in Section 6.2 and then collected by pilot jobs submitted by DIRAC workload manager to 

report consumption of power and other resources per executed user task (see Section 14.4). 

3.4.3 Metrics at service level 

The systems and services used for scheduling jobs to the HTC clusters can be also subject of power 

consumption monitoring and reporting. For example the EGI Workload Manager28 service (based on 

DIRAC WMS – section 14.4) consists of a number of VMs (10 mid-range virtual servers) running various 

components of the service. The service uses also database servers hosted in the same computing 

centre.  The load of the service can vary in a large range depending on the user’s activity. This load and 

the corresponding power consumption are subject to a dedicated monitoring and optimization using 

tools described in section 6.2. In particular, the next generation of the DIRAC services that will be used 

for the GreenDIGIT orchestration demonstrator will be deployed using a Kubernetes infrastructure. 

This will allow to allocate resources dynamically as required by the current loads and not assuming 

peak loads as it is done now. This will require measurements of the system loads and elaborating 

algorithms for load prediction and the corresponding resources allocation.      

 

26 https://www.carbonneutral.com/news/scope-1-2-3-emissions-explained 
27 HEPSCore: https://cds.cern.ch/record/2879939/files/document.pdf 
28 https://www.egi.eu/service/workload-manager/ 
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3.5 Energy carbon content collection 

3.5.1 Carbon intensity of electricity 

In addition to basic parameters such as consumption and price, carbon intensity is essential for data 

centres and their power consumption. This parameter is driven by both grid regulation (production vs 

consumption) and the fact that renewable energy is highly dependent on weather conditions. To help 

with the regulation requirements on the consumption side, it can be used flexibly, with the ability to 

control or shift load. The power grids are operated by Transmission System Operators (TSOs), which 

are responsible for the stable and efficient use of currently available resources. 

Carbon intensity of electricity is referred to as Operating Emissions Rate which can be in general a 

metric formed from mix of pollutants (Green House Gases (GHG) intensity) not only the CO2. We 

distinguish two types of rates: 

• Marginal rate – based on the emissions of power plant needed in response to a change in 
consumption, serving as a signal for load shifting and indicates how much can be avoided. 

• Average rate – an average of emissions of all power plants needed to cover current demand. It can 
describe the current carbon impact of a particular data centre or workload. 

The use of marginal carbon intensity as a signal for load shifting and avoided emissions reporting is 

attractive, but controversial due to issues of accountability, accuracy, and reliability. Therefore, more 

complex life cycle tracking methods are proposed and simple and easy to understand load shifting 

signals are used (solar + wind ratio in the current power mix). 

3.5.2 Carbon intensity data availability 

The current carbon intensity of electricity is not a value generally available, compared to price or 

production mix. Although in some countries the data is available directly from the TSO, in most it must 

be calculated from the actual production mix. To the calculation enters typically estimates (carbon 

intensity of individual fuels and embedded emissions) and methodical decisions (reflecting 

imports/exports and counting batteries and pumped-storage hydroelectricity). There are 3 levels of 

data sources. Individual TSOs, European Association of TSOs (ENTSO-E) and aggregation platforms 

focused on providing data for reporting emissions and load shifting. 

Current generation mix is available through APIs of individual TSOs or through the ENTSO-E, where all 

data is available in full granularity and frequency. In addition, the ENTSO-E provides historical data  and 

even forecasts, all free of charge. To calculate the carbon intensity of the generation mix, we need 

emission factors for each source. A freely available reference table can be found in the contributions 

section of the well-known aggregator platform, ElectricityMaps.29 Well curated data (current and 

forecasted carbon intensity) are available directly from aggregator platforms (Electricity Maps, 

WattTime30, OpenClimateFix), but are typically commercially available or incomplete. 

In terms of data granularity and frequency, the generally available data described above covers regions 

in Europe that are typically equivalent to countries and is provided on an hourly basis. Datasets are 

 

29 https://github.com/electricitymaps/electricitymaps-contrib/wiki/Default-emission-factors 
30 https://watttime.org/wp-content/uploads/2023/11/WattTime-MOER-modeling-20221004.pdf  

https://watttime.org/wp-content/uploads/2023/11/WattTime-MOER-modeling-20221004.pdf
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available, for example from the European Environment Agency (EEA), that cover historical data with 

granularity such as years. 

Standardization efforts are underway, in particular by the Linux Foundation's Carbon Data 

Specification Consortium (CDSC). The Green Software Foundation (GSF) provides the Carbon Aware 

SDK, an abstraction layer that decouples applications from data sources. 

3.6 Energy data model and format 

The existing energy monitoring tools, such as Scaphandre 31, PowerAPI 32, or Kepler 33, generally 

implement a standard approach. First, the data is collected by a software or hardware probe, second, 

the collected metrics are stored in an energy database, and third, the stored data is reported to a user 

through monitoring tools. To facilitate industrial adoption, such tools are designed to integrate into 

existing monitoring systems, such as Prometheus for storage and Grafana for reporting. 

To keep track of usage history, energy metrics are stored as time-series of the power usage in Watts, 

or in Ampere-hours per second if the device is battery-powered. The energy data of a system can be 

implemented as a set of time-series rather than a single one, to provide a finer granularity. For 

instance, each core of a CPU can monitored independently. As a consequence, simultaneously 

monitoring different granularity levels of a given system may lead to redundancy in measures. For 

instance, the energy used by a given core of a CPU will appear in the time-series of this core, of the 

CPU it belongs to, of its server, and of its infrastructure. Thus, the exact scope that the time-series 

represent must also be stored, to clarify how such energy data can be aggregated. In addition, details 

such as the methodology used to obtain such data are relevant to store the data, and to quantify the 

level of confidence in said data. For instance, modelled power values are not as trustworthy as 

measured power values, and may not be considered as a ground truth for further research. 

In addition to energy metrics, the Green Software Measurement Model (GSMM) [5] recommends to 

monitor usage activity, such as the CPU, GPU or RAM usage, expressed as a percentage, or the amount 

of data permanently stored or transmitted over network. Additional metrics, such as the amount of 

useful work produced, allow for quantifying the efficiency of the monitored system as the useful work 

produced per unit of energy used. While GSMM proposes a framework to unify the setup, tools, and 

procedures regarding energy measure, it does not propose a standardized data model for energy 

measures. 

 

31 https://github.com/hubblo-org/scaphandre 
32 https://powerapi.org/ 
33 https://github.com/sustainable-computing-io/kepler 

https://github.com/hubblo-org/scaphandre
https://powerapi.org/
https://github.com/sustainable-computing-io/kepler
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4 Scheduling Approaches for Green Optimisation of 

Scientific Workflow 

4.1 Motivation and previous work 

Power-grid aware scheduling is based on a long-term effort to increase efficiency in computing 

infrastructures. In resource-aware job scheduling, an optimal match between job characteristics 

(software, data) and available resources (CPU, RAM, GPU) is searched. The basic idea is to add an 

element describing the consumption view to this concept. Existing work is typically based on power 

capping, optimising workload placement between nodes (keeping below the level at which modern 

CPUs are most effective), and automatically powering down nodes [6].  

4.2 Carbon-aware optimisation 

An important consideration is the criteria used to optimize. In addition to power consumption and its 

price, the current carbon intensity of the regional electricity and the demand for power-grid regulation 

are added. In the case of waste heat reuse, the current heat demand can also be an important input. 

Flexibility is the ability to manage consumption over time based on demand. It is cited as one of the 

solutions to energy and climate challenges and is based on smart grid concepts that have been 

developed over the years [7]. An emerging term to describe these concepts in software design and 

implementation is carbon-aware. The GSF represents an industry effort, led by Microsoft, focused on 

software that runs on personal computers. Notable examples include carbon-aware distribution of 

updates and carbon-aware scheduling of operating system tasks (including a carbon-aware browser) 

[8]. 

For large distributed infrastructures (both public clouds and RIs), time and geographic load planning 

according to current conditions with a focus on reliability and availability is an essential function. In 

2023, Google published its carbon-based load management platform [9], CERN held a workshop 

focused on the topic in 2024 [5]. Google is active in popularizing the benefits in case of extreme events 

(weather, energy crisis) [6]. Existing works in scheduling are typically focused on use cases related to 

Machine Learning (ML) loads as [10] . A fundamental factor is the design of scientific workflows, which 

is usually not in the hands of the research infrastructure. Involvement of scientific users can have a 

major impact on the efficiency of optimization, specifically for scheduling this can be information about 

the nature of the tasks in terms of energy consumption (CPU vs IO bound) and priority. Work towards 

addressing this issue focuses not only on reporting and feedback, but also on the division of 

responsibilities between infrastructure and scientific users [11] .  

4.3 Energy-Efficient Resource Management and Workflow 

Scheduling in Cloud and Data Centres 

A number of strategies have been investigated in both industry and academia to lower energy 

consumption in cloud and data centre environments. These methods fall under the following general 

categories: 

1. Resource Scheduling using Heuristics and Rules; The application of rule-based and heuristic-based 
resource allocation is one of the classic resource allocation methods. In determining when to up 
or downscale resources, such systems apply predetermined rules, i.e., CPU utilization over a given 
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percentage threshold. Example: By consolidating workloads onto fewer active servers and 
favouring energy conservation, Power-Aware Best-Fit Decreasing (PABFD) is more sophisticated 
than classic bin-packing approaches. 
Limitations: These methods are easy to use and quick to apply but not easily adaptable to different 

workloads. 

2. Optimization Based on Reinforcement Learning (RL), in which an AI agent learns an appropriate 
scaling policy through interaction with the system, has been investigated recently for cloud 
resource management. Agents that dynamically distribute resources in response to real-time 
workload fluctuations have been trained using Deep Q-Networks (DQN) and Proximal Policy 
Optimization (PPO). 
Benefits: By continuously adjusting to demand and reducing wasteful energy use, it can 

outperform rule-based approaches. 

Difficulties: Needs a lot of processing power and training data to achieve convergence. 

3. Consolidation of Energy-Aware VMs; By strategically placing VMs on fewer real machines, VM 
consolidation strategies seek to reduce the number of active servers. These approaches are based 
on moving workloads from unproductive servers to other servers and shutting down the idle ones 
is known as "live migration of VMs." Dynamic voltage and frequency scaling (DVFS) is a technique 
for dynamically modifying processor frequency in order to lower power consumption. One such 
method is Google's Borg System, which effectively distributes workloads throughout data centres 
while implementing energy-conscious regulations. 

4. Using Edge Computing and Fog Computing to Reduce Power Consumption Edge computing 
delegates particular workloads to devices that are in proximity to users (for example, local edge 
nodes or IoT gateways (GWs) rather than keeping all processing in large data centres. This saves 
energy expenses by keeping use of the cloud to a minimum and reducing distant transport of data. 
As a case in point, fog computing reduces use of large data centres by shifting workloads to 
neighbouring resources. 
Challenges: Effective allocation of tasks demands strong orchestration strategies. 

5. Function-as-a-Service (FaaS) and Serverless Models Only when a function is called is serverless 
computing dynamically provisioning resources. This realizes huge energy savings in that it avoids 
having to constantly maintain servers in a live status. Examples of these are Google Cloud 
Functions and AWS Lambda. 
Benefits: Workloads scale automatically without VM management needs. Cons: Unsuitable for all 

applications, especially those that need to process in a stateful manner. 

4.4 Task scheduling for HTC/Cloud/HPC computing resources 

The most resource consuming part of computations in large RIs is performed using HTC (computational 

grids), Cloud and HPC resources. Workflows typically consist of producing modelling data (Monte-Carlo 

simulations, digital twins) as well as processing large volumes of modelling data and data acquired in 

scientific experiments. The processed data is usually geographically distributed over multiple data 

centres to optimize the use of computing resources and avoid potential data losses. Treatment of large 

data volumes is done by execution of a large number of tasks (jobs) that are usually grouped together 

to form production campaigns. One production is processing a large portion of data of the same type 

applying the same processing algorithms.  

The task schedulers are the services that are responsible for the massive task placement and execution 

in the distributed heterogeneous computing environments. The primary goal is to optimize the task 
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placement for the fastest turnaround and to make the most efficient usage of various computing 

resources. However, other optimization criteria can be included into scheduling algorithms. 

The DIRAC Workload Management System (WMS) is a smart task scheduler in a distributed computing 

environment [12]. It was developed for the LHCb experiment at CERN [10] and is now used by multiple 

scientific communities around the world. In particular the EGI Workload Manager service is based on 

the DIRAC software [13]. The scheduler architecture is based on the concept of pilot jobs and consists 

of the following components:  

• a registry of available sites where their metrics and connection details are collected;  

• a central Task Queue service to which the user jobs are submitted;  

• pilot factories specific for each computing resource type;  

• pilot jobs running on worker nodes and forming together with the central Task Queue a scalable 
distributed WMS.  

Pilot jobs are sent to various computing centres using appropriate protocols and credentials. They 

make reservations of computing resources (slots in batch systems or VMs in the cloud sites) that will 

be available for the scheduler service. Pilot jobs collect a precise description of their respective 

computing resources and present it to the Matcher service of the central Task Queue which is choosing 

one of the waiting jobs suitable for execution on the worker node. The pilot job receives the user task 

and steers its execution on the worker node, reports its status and uploads results to storage systems 

where they are made available for the users. 

The DIRAC WMS is well suited for the optimization of massive computational workflows to minimize 

the overall power consumption and to take into account other metrics characterizing computing 

resources at various sites: 

1. The pilot jobs make resource reservations with knowledge of user task properties currently 
available in the central Task Queue. Therefore, the reservations are made in sites which have 
currently a spare capacity and are most optimal for task execution. For example, data processing 
tasks trigger resource reservations on sites close to storage systems hosting the required data. This 
minimizes the use of network resources for data transfers. Other site metrics defined by the 
GreenDIGIT project as well as more detailed job characteristics can be taken into account. The 
central Task Queue offers a global view of all the user payloads and allows for general optimization 
of the resource reservation for multiple user communities and multiple heterogeneous sites 
served by the WMS services. 

2. The pilot jobs prepare and validate the execution environment before the actual job starts. This 
considerably reduces the user job failure rate preventing the waste of resources and energy. 

3. The pilot jobs steer the user job execution on the worker nodes and monitor the exact 
consumption of CPU, memory, input/output traffic of the job processes. These data are 
communicated back to users which allows them to precisely describe the properties of subsequent 
similar jobs which in turn will result in a more precise scheduling decision.  

4. Pilots can detect malfunctioning jobs, e.g. stalled or overusing memory and CPU allocations, and 
prevents the waste of resources and reducing useless power consumption. 

5. The pilots can communicate with the hosting environment and collect detailed information about 
the worker nodes which can be used later while making resource reservations with better 
accuracy.  

6. In cases where pilots can interact with the hosting environment, they can trigger certain actions 
to minimize power consumption, for example, by reducing the CPU frequency while the user is 
performing input/output operations. 
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DIRAC WMS registers resources consumption data, e.g. CPU, data transfers and many others in its 

Accounting subsystem. Other accountable data can be defined and registered, e.g. power-aware 

resources consumption metrics. This allows for monitoring and evaluating the effect of power-

awareness augmented scheduling algorithms.  
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5 Metrics for Energy Efficiency of Network and 5G 

Infrastructure 

5.1 Metrics collection and management of IoT environments 

5.1.1 Trends in Energy Efficiency and Metrics Collection in IoT Environment 

This section contains an executive summary of the trends, available solutions and current 

considerations, that are given in terms of IoT energy consumption optimisation.  

During the past years, the need for interconnected IoT devices was strongly intensified, which also 

triggered exponential increments in the user data demands. [14] In such a way, escalated interest in 

IoT energy efficiency increased in the research community as well. With IoT devices deployed across 

diverse sectors such as smart cities, healthcare, vehicular networks and industrial automation, the 

cumulative energy footprint is becoming a critical concern. It is worth noting that there is a huge 

variation in the characteristics and capabilities of IoT devices, indicatively ranging from simplistic 

sensors (e.g. temperature, humidity), smart devices (e.g. watches) to high performance 

telecommunication devices (e.g. IEEE 802.11ah, LoRa, NB-IoT). Thus, there are already approaches for 

IoT devices / networks, that intend to lower the power consumption and improve the energy efficiency 

along different parts of the continuum (IoT Sensor Network, Far Edge, Near Edge and Cloud), as 

depicted in Figure 6: GreenDIGIT high-level architecture for optimisation. 

Figure 6: GreenDIGIT high-level architecture for optimisation 

Energy-efficient communication protocols like Low Power Wide Area Network (LPWAN), e.g. IEEE 

802.11ah, LoRa and NB-IoT, are gaining traction for long-range, low-power connectivity. Specifically, 

the potential optimisations in such networks can be divided into 4 major categories across the 

continuum mentioned above. 
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IoT Sensor Network (Device Layer - Things Layer) 

This layer consists of the actual IoT hardware, which is deployed to create the device/ sensor networks.  

As mentioned above, IoT devices span multiple categories from simplistic sensors (e.g. environmental, 

motion, industrial sensors and smart wearables) to advanced communication & network devices (e.g. 

short/long range telecommunication transceivers). The former hardware category is mainly utilized to 

collect measurements, and the latter to deploy networks and exchange information (data, applications 

etc.). Additionally, this layer contains the hardware that is used to monitor useful metrics of the IoT 

ecosystem (e.g. smart meters for energy consumption). 

Far Edge (Edge Computing Layer) 

This part of the continuum typically contains companion devices like Single-Board Computers 

(Raspberry PI, Nvidia Jetson, Intel NUC etcetera), that are utilized to host IoT network devices and/or 

sensors mentioned in the previous category. Companion devices offer in many cases, enough 

computational power to locally process measurements gathered and exchanged information among 

the IoT sensor network. This way, reduced latency and energy consumption optimisations may accrue. 

Of course, based on the IoT network architecture (Infrastructure, mesh etcetera), which is deployed at 

each application scenario, these devices may also have different networking roles, such as Access 

Points (APs), Stations (STAs), Relay nodes and GWs. 

Near Edge / CDN (Network Layer) 

Following the previous two layers, Near Edge (often via content delivery networks (CDNs) mainly 

consists of edge GWs, servers and fog computing nodes. These entities are typically placed 

geographically closer to the user compared to the cloud and provide distributed computing and 

storage capabilities. The main scope of this layer is to offload computational tasks that can’t be 

executed from Far Edge devices (like Raspberry Pi), while in parallel larger round-trip times to/from 

Cloud are eliminated. Typical processes that are ported for execution at this point, may include but are 

not limited to more demanding data analysis compared to those performed at the Far Edge. This layer 

enhances the performance, scalability, and security of IoT applications by caching data closer to end 

devices and minimizing in many cases unnecessary communication between IoT endpoints and cloud 

infrastructure. 

Cloud 

Finally, this layer involves centralized Cloud infrastructures that intend to execute big data processing, 

Artificial Intelligence (AI) model training and host long-term data storage. Through the training of 

complex ML models, Cloud-based orchestration overall IoT continuum can be achieved. This includes 

techniques such as workload allocation, virtualization/containerization and dynamic resource scaling. 

Starting from IoT sensor network design considerations (utilizing low-power IoT devices, harvesting 

solar energy and reducing transceiver operational times etc), up to sophisticated ML correlated 

decisions (workload allocation, virtualization etc) on the Cloud side. Below, there is an executive 

summary for some research approaches correlated with the topics mentioned. 
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5.1.2  EELAS 

Initially, the authors of “EELAS: Energy Efficient and Latency Aware Scheduling of Cloud-Native ML 

Workloads” [15],  aim to optimize the deployment and execution of cloud-native ML workloads across 

the cloud-to-things continuum by balancing energy efficiency and latency constraints. The key 

contributions of this research approach can be summarized as follows: 

• Multi-Level Scheduling Algorithm: Optimally distributes ML workloads across IoT, edge, and 

cloud resources to reduce energy usage while meeting latency constraints. 

• Minimizing energy consumption: Achieves cloud-to-things continuum energy consumption 

minimization when deploying workloads. 

• QoS-Aware Resource Allocation: Dynamically allocates CPU resources based on real-time 

demand, ensuring energy-efficient operation without sacrificing performance. 

It is worth noting that the scheduling problem is formulated as Integer Linear Programming (ILP) and 

a less complex heuristic algorithm that allows the efficient allocation of resources within the 

continuum is being developed. The developed approach is being evaluated through several extensive 

testbed scenarios. The experimental results highlight performance improvements in energy efficiency 

of over 41.8 % and compared to the off-the-shelf Kubernetes scheduler. 

5.1.3 Study on Energy Consumption Optimization Scheduling for IoT 

Following, the authors at “Study on Energy Consumption Optimization Scheduling for Internet of 

Things” [16] deal with the IoT scheduling energy costs themselves (communication costs). The list of 

this work’s contributions is given below: 

• Energy Loss Optimization Scheduling / Multi-Objective Model: Develops a mathematical model 
to balance energy consumption and scheduling efficiency in IoT devices. This is achieved through 
a multi-objective fuzzy optimization algorithm which simplifies the decision-making process. 

• Idle Time Optimization for IoT Device Scheduling: The algorithm searches for the idle time of the 
device and optimizes the device scheduling energy consumption model to reduce the overall 
energy consumption of the device scheduling in the IoT environment. 

The authors consider and formulate the mathematical problem as a constrained multi-objective 

optimization problem, and they use fuzzy mathematics to solve it. Specifically, they set goals, initially 

to minimize the total energy consumption in IoT scheduling, by simultaneously minimizing the 

scheduling time as well. Through Matlab simulations, the authors showcase higher modelling accuracy 

and better energy saving effects, compared to “traditional” methods examined. 

5.1.4 IoT-enabled Smart Energy Management Device (SEMD) for Optimal 

Scheduling of Distributed Energy Resources (DERs) 

Additionally, the authors of “IoT-enabled Smart Energy Management Device for Optimal Scheduling of 

Distributed Energy Resources” [17] propose the development of a SEMD designed for real-time 

optimization of DERs in consumer-end energy management. The device operates through three key 

modules: data preprocessing, forecasting, and optimization. By leveraging ML models (Linear 

Regression, XGBoost, and LSTM), SEMD provides accurate load demand and energy generation 
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predictions, enabling efficient scheduling of DERs such as rooftop PV, Battery Energy Storage Systems 

(BESS), and Vehicle-to-Grid (V2G) enabled Electric Vehicles (EVs). The key contribution of this approach 

can be summarised as follows: 

• Development of SEMD: A portable IoT-based SEMD with robust software and hardware 
architecture for real-time energy management is being developed. 

• ML Forecasting: Integration of ML-based models (LR, XGBoost, LSTM) to enhance energy demand, 
PV generation, and price forecasting accuracy. 

• Experimental Validation: Proof-of-Concept testing on real-world energy consumers, 
demonstrating economic benefits and grid reliability improvements. 

The authors consider and formulate the mathematical problem as a Mixed Integer Non-Linear 

Programming (MINLP) model with the objective of minimizing energy costs for consumers while 

maximizing the utilization of DERs, such as rooftop PV, BESS, and EVs. 

5.1.5 Outline – IoT Correlated Metrics 

The current survey on energy consumption trends and practices, reveals that the energy efficiency / 

optimisation, can be characterized as a complex problem to tackle on the IoT environments. There are 

available approaches that consider some, or all the parts of the IoT continuum, and by providing 

different outcomes / monitoring solutions. Some common techniques found on the literature include 

but are not limited to energy-aware task scheduling, adaptive power management, optimised data 

transmission strategies and network optimisations. Focusing now more on the pure IoT part of the 

continuum (IoT Sensor Network & Far Edge), some power and network correlated metrics that can be 

taken into consideration are the following. 

• IoT Device / Sensor Power Consumption Metrics: This includes the average power consumption 
for idle, receive and transmit states of the wireless adapter (where applicable to be measured). As 
the IoT Device / Sensor is attached to the Far Edge Device, through short-range local connections 
like serial (USB, pins etc.), in most of the cases there is no need to measure the data transmission 
and processing overhead for transferring the measurements. However, the large variety on the 
connection types given for the IoT devices (USB, pins, Hat etc.), increases the complexity or makes 
it impossible in some cases to measure the energy consumption on the device itself with 
appropriate hardware. In some cases, energy consumption measurement through software, or 
based on reference values, are the only available solutions. 

• Far Edge Device Power Consumption: This part includes the power consumed during local data 
processing and before deciding to port them to the next parts of the continuum (Near Edge and 
Cloud). Thus, the local data processing energy consumption (e.g. CPU) can be measured and noted 
either through software or hardware components (depending on the device). Additionally, 
depending on the network connection (wired / wireless), it may be also useful to measure the 
energy consumption required to transfer data to Near Edge and/or at the Cloud, which may help 
in decision making to forward the data for further processing. 

Additionally, some further metrics that are not directly relevant to energy consumption, but may affect 

it in some ways are the following: 

• Wireless Network Efficiency Metrics: Specifically, for the IoT protocols, most of them operate 
under the use of the unlicensed spectrum (some exceptions may include protocols like NB-IoT). 
Thus, in these wireless environments there is always the case of performance uncertainty, as there 
is no control both number and the type (same or different protocol coexisting in the same 
frequencies) of contending wireless devices. Thus, in some cases it is useful to retrieve and capture 
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networking metrics, such as latency and available throughput with the neighbour nodes. These 
measurements may also be useful for the decisioning / scheduling, load balancing, or to be 
compared with potential user constraints for served applications. 

• Energy harvesting: There are also cases for the IoT and Far Edge device, in which the use of 
batteries and solar panels are taken into consideration and applied. Therefore, in such cases, it 
may be useful to consider and note the amount of energy that can be collected at each given time 
and utilized. 

5.2 Metrics collection and management of 5G environments 

5.2.1 5G observability framework 

This part describes the overall 5G state of the art and possible observability framework to be included 

in GreenDIGIT Digital Infrastructure. 

5G state of the art has shifted its architecture towards containerization, where network services are 

being decoupled from the infrastructure and are divided into smaller elementary models called 

microservices or network functions. On one hand, this approach has led to a radically new 

technological framework offering multi-tenant flexibility well beyond classical software-defined 

environments; on the other side, it posed more than a concern on environmental sustainability. 

Studies have shown that the energy consumption of the infrastructure deployed for 5G is much higher 

with respect to its initial design [1]-[4]. Also, the energy consumption is a performance index of only 

the infrastructure layer, and it is not propagated to the upper 5G network providers and vertical 

applications. This means that the vertical stakeholder does not understand the impact on the resource 

and energy consumption, while infrastructure providers can easily adopt sophisticated resource and 

power management strategies. Given this issue, it is essential to integrate observability and monitoring 

frameworks that propagate Key Performance Indexes to all the stakeholders. 

 

Figure 7:Internal architecture of the observability framework [5][6] 

The observability framework is shown in Figure 7. As it can be seen, it is divided into three components: 
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5.2.1.1  (Infrastructure Data Analytics Function (IDAF) 

It’s the module responsible for exposing infrastructure related metrics. As illustrated in Figure 1, the 

IDAF is composed of five elements that provide metrics in a Prometheus-like format. cAdvisor and 

Kube State Metrics (KSM) offer insights into the Kubernetes cluster. cAdvisor, which is integrated into 

the kubelet (the main K8s agent responsible for managing pod deployments and ensuring the health 

of the K8s cluster), reports on the utilization of computing resources (e.g. CPU, memory, networking, 

etc.) for each container. KSM, on the other hand, is an additional service that provides information on 

the state of various K8s objects (e.g. pods, nodes, replica sets, stateful sets, etc.). 

NodeExporter and Scaphandre [8] gather metrics related to the bare-metal servers. NodeExporter 

collects a wide range of hardware and kernel-related metrics, including server resource utilization (e.g. 

CPU, memory, networking, etc.). Scaphandre, on the other hand, reports on the power consumption 

of individual processes running on the server, including containers and VMs. It uses Intel's RAPL [9] 

counters and CPU time spent on each process to calculate power usage. Currently, Scaphandre only 

tracks CPU power consumption, and in some cases, DRAM controller usage, making it particularly 

reliable for processes that do not require GPUs, as the CPU is typically the primary power consumer. 

Lastly, the Raritan exporter is responsible for reporting the power consumption of Raritan Power 

Distribution Units (PDUs). 

All the above metrics are stored in a Prometheus database, which is accessible by the three functions 

(i.e., IDAF, MDAF, NWDAF). Prometheus serves as a time-series database (TSDB) that collects metrics, 

each consisting of a timestamp, value, and optional key-value labels. 

5.2.1.2 Management Data Analytics Function (MDAF) 

Combines metrics coming from both the infrastructure and the management, allowing to estimate the 

current and the future carbon/energy footprint induced to the computing and offloading resources in 

the edge-cloud continuum, and even the availability and the use of green energy sources and hardware 

offloading engines. 

The MDAF is primarily composed of three main components: the metric collector, the analytics blocks 

(which can include more than one), and the exporter. 

The metric collector uses the prometheus-api-client library to query the Prometheus instance and 

retrieve metrics from Scaphandre and cAdvisor. Its primary purpose is to collect data on the power 

consumption of each process and the resource utilization of each container. Additionally, it can identify 

metrics that are not associated with virtualized components—namely, kernel processes essential for 

the proper functioning of the server and the layers above it, such as the hypervisor and container 

orchestration platforms. We assume that without these virtualized components (e.g. a containerized 

5G network running on K8s), the servers would be inactive. As a result, the power consumption of 

these kernel processes is considered the "embodied power consumption." 

The analytics blocks consist of a set of modular algorithms designed for data processing. These include 

calculating the embodied power consumption of the virtualized components, enriching the metrics to 

address Scaphandre's limitation in acquiring container labels for unique identification, and, 

importantly, mapping the kernel-level power metrics sourced from the IDAF. 
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Finally, the exporter’s purpose is to expose the newly generated metrics in a Prometheus-compatible 

format. It relies once again on the prometheus-api-client library to ensure compliance with the 

Prometheus format. 

5.2.1.3 Network Data Analytics Function (NWDAF) 

Conceived to acquire monitored data at the edge and the cloud part of the infrastructure and to 

produce and analyse added-value Key Performance Indicators (KPls), like forecasts of NF workloads. 

5.2.2 Connection to GreenDIGIT architecture 

A possible solution is to integrate an observability framework to GreenDIGIT that is similar to the one 

proposed by 6Green Project [5][6]. This framework allows to: 

• retrieve energy consumption of hardware infrastructures 

• break down the different contributions from any software instance/ microservice in the 5G 
infrastructure 

•  recombine these contributions to estimate the consumption levels ascribable to the virtual 
resources and artefacts consumed by upper level 5G stakeholders. 

Figure 8 provide an illustration where the 6G observability framework can be integrated in GreenDIGIT 

multi-dimensional infrastructure defining the main data processing, data communication and 

workflow processing streams. 

 

 

Figure 8:5G observability framework and potential connection to GreenDIGIT architecture 
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In conclusion, there are different available practices, approaches and solutions, that are given in the 

literature and consider the energy consumption monitoring for the IoT to Cloud continuum. The ideal 

characteristics for the system under development, is to be hardware agnostic, providing thus support 

and measurements for different IoT vendors.  

5.3 Metrics collection and management of mobile environments 

The power consumption of mobile software has become a critical research area, as excessive power 

consumption directly impacts end-users by draining batteries, shortening their lifespan over time, and 

reducing device usability. Thus, energy inefficiencies can lead users to replace hardware more 

frequently, causing environmental impacts from both the produced e-waste, and the manufacturing 

of new hardware. This limitation affects both the personal devices of private individuals, and the fleets 

of devices managed by institutions, such as devices provided to employees performing field work. 

Research infrastructure and scientists relying on mobile devices, for instance to study mobile software 

engineering or wireless networking, are also affected, as their device may be under high workload.  

This creates a compelling incentive for developers to understand and minimize the power usage of 

their software. 

Improving software power efficiency can be achieved by adopting new practices and habits as part of 

the development processes [18]. 

Those new routines include: 

• Understanding the requirements and goals of the software before the development phase. This 
involves anticipating optimal software development options [19][20] and carefully selecting 
power-efficient third-party libraries, as their power consumption can vary significantly, based on 
their design [21]. 

• Testing with environmental impact in mind, on a broader variety of devices to reduce the risk of 
software obsolescence [22] and identify abnormal consumption patterns during execution. 

• Monitoring post-release applications to detect performance variations across environments and 
address disparities. 

However, these power optimizations may conflict with other objectives of the application, such as 

maintaining performance [23] [24] and security [25], making power efficiency a secondary priority in 

some cases. 

Evaluating the relevance of a power modelling solution requires knowledge of the device's actual 

power consumption, which serves as the ground truth for validating power model estimations. 

However, while hardware performance counters are exposed by traditional computer processors [26], 

they are not included in smartphones' SoC. Thus, the power usage of mobile devices is often assessed 

at the battery level, either by integrating a power meter between the battery and the device, or by 

relying on programmatically available battery charge indicators [27]. However, physical measurement 

of smartphone power consumption is often impractical due to the increasing trend of non-

dismountable design, such as batteries being glued to the casing. Therefore, the overall battery charge 

is largely used to assess or predict the power efficiency of software, such as mobile applications [28], 

code snippets [29][30], or software design decisions [31]. However, such a metric encompasses the 

whole power usage of the device and offers only a coarse-grained granularity. 

To tackle this limitation, since 2021, some Android devices have been equipped with a per-component 

power meter, the On-Device Power Rails Monitor (ODPM). These power meters are hardware probes 
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placed downstream of the battery, directly before the component. ODPM can monitor the power 

usage of each of the twelve power rails of the device, with each rail powering one or many 

components.  Available power rails include, for instance, each group of CPU cores, the network 

components, or the screen. However, this tool is still limited as few devices adopted it, and accurate 

date are only available in test environment, and not in production monitoring scenarios. For devices 

not equipped with ODPM, it remains possible to model per-component power-usage. 

While developers may be interested in the energy efficiency of their software for optimization 

purpose, this indicator does not convert directly to environmental impact. The environmental impact 

of software running on mobile devices must account for its power usage and the  electricity-mix of its 

users, but also on the power usage of networking infrastructure and servers used by this software. To 

comply with a life-cycle assessment approach, a share of the embodied impact of terminals, the 

networking infrastructures, and hosting infrastructures used by this software must also be imputed to 

this software. Such a quantification of environmental impacts allows for reporting results or arbitrating 

between energy and network optimizations that may shift impacts between the terminals, the 

network, and the servers, or between different impact categories.34 

5.4 Metrics collection and management of networks 

The draft specification "Energy Metrics For Data Networks"35 introduces a framework for evaluating 

and enhancing the energy efficiency of data networks. It emphasizes the growing importance of energy 

efficiency due to rising energy costs and environmental concerns, highlighting the significant impact of 

network operations on overall energy consumption. The document proposes standardized metrics to 

facilitate benchmarking and improvements in network energy performance. Key metrics include: 

• Power Consumption per Data Rate (PCDR): This metric measures the power consumed 

relative to the data rate of network equipment, evaluating the energy efficiency of data 

transmission. The formula for PCDR is:  

 

Where: 

o Power Consumption (W): The average power in watts consumed by the specified link, 
group of links, or the network during the measurement period. 

o Transmission Rate (Gbps): The average data rate in gigabits per second transmitted 
over the link, group of links, or the network during the same period. 

 

 

 

34 European Commission, Directorate-General for Environment. (2021). Commission Recommendation (EU) 2021/2279 of 
15 December 2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle 
Environmental Performance of Products and Organisations. 
35 https://datatracker.ietf.org/doc/draft-bogdanovic-green-energy-metrics/  

https://datatracker.ietf.org/doc/draft-bogdanovic-green-energy-metrics/
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For example, if a network link consumes 500 watts of power and has a transmission rate of 10 Gbps, 

the PCDR would be: 

 

• PUE: PUE assesses the overall energy efficiency of a data centre or facility, with a value closer to 1 
indicating higher efficiency. The formula for PUE is: 

 
Where: 

o Total Facility Power: The total power consumed by the data centre facility (including 
cooling, lighting, and other overhead). 

o IT Equipment Power: The power consumed by the IT equipment (servers, storage, and 
network devices). 

 
For instance, if a data centre has a total facility power consumption of 1,000 kW and the IT equipment 

consumes 700 kW, the PUE would be: 

 

• Network Equipment Energy Efficiency (NEEE): NEEE evaluates the energy efficiency of network 
equipment based on work output per energy input, benchmarking devices to compare energy 
performance under specific workloads. The formula for NEEE is: 

 
Where: 

o Useful Work Output: The amount of work performed by the network equipment, such as 
data processed or transmitted. 

o Energy Input: The total energy consumed by the network equipment during the 
measurement period. 

For example, if a network device processes 5,000 gigabytes of data while consuming 250 kWh of 

energy, the NEEE would be: 

 

• Energy Proportionality Coefficient (EPC): EPC measures how closely a system's energy 
consumption scales with its workload, where a value close to 1 indicates power consumption is 
highly proportional to workload. The formula for EPC is: 

 
Where: 

o Power Consumption at Idle: The power consumed by the system when it is idle. 
o Power Consumption at Full Load: The power consumed by the system when operating at 

full capacity. 
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For instance, if a server consumes 100 W at idle and 200 W at full load, the EPC would be: 

 

The draft also underscores the importance of standardized testing conditions (STC) to achieve reliable 

and consistent results. Adhering to STC ensures fairness, objectivity, valid comparisons, and minimizes 

confounding variables, thereby supporting test validity and reliability. By defining these metrics and 

guidelines, the document aims to promote energy efficiency in network design and operation, enabling 

administrators and designers to identify opportunities for energy savings, optimize performance, and 

to reduce the environmental impact of network operations.  
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6 Sustainability Aspects in RIs for Experimental Research 

6.1  Integrated monitoring systems and resource management 

RIs are complex cyber-physical systems composed of multiple interconnected subsystems, including 

cooling, computing, networking, PDUs, and facility management systems [32]. Each of these 

subsystems plays a critical role in ensuring the seamless operation of data centres. However, they are 

typically monitored and managed independently using different tools and teams, leading to significant 

challenges in achieving integrated optimization and sustainability by addressing energy efficiency 

aspects in a holistic and multi-factor/multidimensional way. 

For instance, tools like Prometheus are used for collecting node-level metrics from physical servers 

[33], while entirely separate tools manage and monitor VMs, and cooling systems. This siloed approach 

creates difficulties in aggregating and synchronizing monitoring data across subsystems due to the 

heterogeneity of data sources and platforms. Key challenges in individual monitoring include: 

• Heterogeneous Systems: The diversity of tools and platforms used for monitoring different 
subsystems creates interoperability issues. These systems often lack standardized protocols for 
data exchange, complicating efforts to integrate them into a cohesive monitoring framework. 

• Data Synchronization: Aggregating real-time metrics from disparate sources is challenging due to 
variations in data formats, sampling rates, and communication protocols. This lack of 
synchronization can lead to delays or inaccuracies in decision-making. 

• Scalability and Complexity: As RIs grow in size and complexity, managing individual monitoring 
systems becomes increasingly resource-intensive. Scaling up monitoring solutions without 
compromising performance or accuracy remains a significant challenge. 

To address these challenges, there is a growing need for integrated monitoring overlay systems that 

aggregate metrics from all subsystems in real-time. Such systems would enable: 

• Integrated/multi-factor Optimization: By providing a unified view of all subsystems, operators can 
identify inefficiencies and optimize resource allocation across the entire infrastructure. 

• Real-Time Decision-Making: Integrated systems allow for immediate responses to anomalies or 
changes in operational conditions, improving resilience. For instance, such systems allow dynamic 
workload distribution and optimized cooling strategies [34]. 

6.2 VREs for experiment reproducibility  

Reproducibility is a fundamental principle of Scientific Research, ensuring that experiments can be 

validated, extended, and built upon by other researchers. However, challenges such as inconsistent 

data management, lack of computational resources, and difficulties in sharing workflows hinder 

reproducibility. A VRE provides a comprehensive solution by integrating computational tools, data 

management frameworks, and collaborative platforms into a unified digital workspace. 

6.2.1 The role of VREs for experiment reproducibility 

A VRE enables scientists to carry out, document, and share their research in a standardised and 
controlled environment. It offers: 
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• Data Management and Provenance management: VREs ensure that all input data, intermediate 
results, and final outputs are stored securely and linked through metadata standards like PROV-O 
(Provenance Ontology), ensuring transparency in data lineage. 

• Standardised Workflows: throughout systems such as Jupyter Notebooks, Galaxy Workflows, or 
RStudio integrated into a VRE, users can define and execute analytical pipelines that can be 
replicated and reused across studies. 

• Collaboration and Version Control: VREs support versioned repositories for code and datasets, 
allowing teams to track changes, reproduce analyses, and collaborate effectively through tools like 
Git and D4Science’s workspace versioning. 

• FAIR Compliance: VREs align with the FAIR (Findable, Accessible, Interoperable, Reusable) 
principles by providing persistent identifiers, standardised metadata schemas, and access control 
mechanisms to promote data sharing and reproducibility. 

• Computational Reproducibility: By providing access to containerised computing resources (e.g. 
via Docker or Kubernetes), VREs allow researchers to execute analytical workflows in controlled 
environments, reducing dependency on specific local machine configurations. 

6.2.1.1 Notable implementations 

D4Science VRE 

D4Science is an advanced VRE platform that provides researchers with collaborative environments for 

data analysis, computational modelling, and experiment reproducibility. It supports various scientific 

domains, including social sciences, environmental sciences, marine research, and biodiversity studies. 

Key features: 

• Cloud-based Execution: Supports computational workflows using Jupyter, RStudio, and ShinyApps 
and external Cloud Providers such as Google Cloud Platform. 

• Provenance and Versioning: Tracks execution history, ensuring that analyses can be reproduced. 

• FAIR-Compliant Data Management: Integrates structured storage and metadata annotation for 
transparent data reuse. 

• Virtual Laboratories (VLabs): Customisable environments tailored to specific research needs. 

Galaxy Project VRE 

Galaxy is a widely used VRE designed to enable reproducible computational research in life sciences 

and bioinformatics. 

Key features: 

• Workflow Management: Provides a user-friendly interface for creating and executing complex 
analysis pipelines. 

• Integrated Data Repositories: Ensures persistent data storage and structured metadata 
management. 

• Transparent Reproducibility: Every computational step is logged, and workflows can be easily re-
run by other researchers. 

• Containerized Execution: Uses Docker and Kubernetes to provide scalable and standardized 
computational environments. 
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6.2.1.2 Challenges and future directions 

Despite significant advancements, challenges remain in ensuring long-term reproducibility, 

interoperability, and accessibility across VREs. Future efforts should focus on: 

• Interoperability across platforms: enhancing standards for cross-platform workflow execution 
and integrating VREs with EOSC and other global RIs. 

• Sustainable Computing and Energy Efficiency: as VREs increasingly rely on cloud computing and 
distributed infrastructures, reducing the carbon footprint of computational workflows is becoming 
a critical priority.  

• Scalability and Performance: Optimizing Cloud and HPC resources to efficiently handle large-scale 
datasets while maintaining responsiveness for real-time collaboration. 

• Persistent Identifiers and Digital Object Linking: Strengthening reproducibility by ensuring 
datasets, workflows, and results are persistently citable, retrievable, and reusable across different 
research environments. 

6.2.2  Tools for VRE Energy Efficiency Optimisation and Environmental 

Sustainability  

6.2.2.1 Addressing Energy Efficiency and Environmental Sustainability in VRE Operation 

VREs are digital platforms that enable researchers to collaborate, share data, and conduct experiments 

in a virtualised environment [35]. VREs are increasingly critical for large-scale RIs, although they pose 

environmental challenges—which GreenDIGIT should address. This section focuses on sustainable 

VREs, focusing on energy-efficient design approaches, resource optimisation, and the integrations to 

be made in GreenDIGIT's architecture. The main features of VREs are: 

• Experimentation: VREs support the design, execution, and analysis of experiments.  

• Sustainability resource optimisation: VREs can be designed and operated in an energy-efficient 
manner to minimise their environmental impact. 

• Customisation: VREs can be customised to meet the specific needs of different research 
communities.  

• Data Management: VREs provide tools for storing, managing, and analysing large datasets.  

The EGI Foundation [36] is one of the prime examples that have taken steps in this direction with the 

EGI Notebooks tool36. To address the environmental challenges posed by VREs, a range of tools and 

frameworks have emerged. These can be broadly categorised into metrics and KPI frameworks, which 

provide standardised ways to measure and understand the carbon intensity of software and 

infrastructure, and dashboard-like tools, which offer visualisations and real-time insights into energy 

consumption. 

6.2.2.2 Metrics and KPI frameworks and tools 

Green Metrics Tool37 & SCI Specification38: This framework defines Software Carbon Intensity (SCI) as 

a standardised metric (gCO2eq per function unit) to quantify software carbon emissions. The Green 

Metrics Tool is a developer-focused tool that implements the SCI specification. It functions by 

 

36https://notebooks.egi.eu/hub/ 
37https://sci.greensoftware.foundation/ 
38https://www.green-coding.io/products/green-metrics-tool/ 

https://notebooks.egi.eu/hub/
https://sci.greensoftware.foundation/
https://dl.acm.org/doi/10.1145/3575693.3575709
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measuring the energy consumed by software during execution and converting it to carbon emissions 

using location-based or grid-average emission factors. Key components include energy meters, CPU 

utilisation trackers, and emission factor databases. Its unique characteristic is the focus on 

standardising software carbon measurement through the SCI specification, enabling comparability 

across different software systems. 

EcoVisor [37]: EcoVisor operates as a software layer that virtualises energy systems, allowing 

applications to dynamically adapt to fluctuating clean energy availability. Functionally, it intercepts 

application energy requests and optimises them based on real-time clean energy supply data. Key 

components include energy supply forecasting modules, application energy demand models, and 

control algorithms that adjust application behaviour. Uniquely, EcoVisor enables carbon-aware 

application design by providing a software-defined interface to manage energy consumption in 

response to clean energy variability. 

Cloud Carbon Footprint39: This tool estimates cloud emissions by analysing cloud provider billing and 

usage data. It functions by connecting to cloud accounts (AWS, GCP, Azure) and processing billing 

exports to attribute energy consumption and associated emissions to specific cloud services. Key 

components include data connectors for each cloud provider, emission factor datasets, and 

aggregation/reporting modules. Its unique aspect is its focus on cloud environments and its provider-

agnostic approach, offering a consolidated view of cloud carbon footprints across different platforms. 

6.2.2.3 Dashboard tools 

CodeCarbon40: CodeCarbon is a Python library that instruments code to measure energy consumption 

and estimate carbon emissions. It functions by using software-based power meters to track CPU and 

GPU energy usage during code execution. Key components include runtime libraries, emission factor 

databases, and logging/visualisation capabilities. Its unique feature is its code-level integration and 

ease of use, allowing developers to directly measure and visualise the carbon impact of their code. 

Zeus41: Zeus is a library specifically designed for deep learning energy measurement and optimisation. 

Functionally, it provides tools to profile the energy consumption of DL workloads and apply 

optimisation techniques. Key components include energy profilers, optimisation algorithms (e.g. 

model pruning, quantisation), and reporting dashboards. Uniquely, Zeus focuses on the specific energy 

challenges of AI/ML, offering targeted solutions for this domain. 

Keit42 (from Aknostic): KEIT monitors Kubernetes clusters to provide insights into the environmental 

impact of containerised applications. It functions by collecting data from Kubernetes APIs and 

infrastructure metrics to estimate energy consumption and carbon emissions of workloads running in 

the cluster. Key components include data collectors, a metrics processing engine, and visualisation 

dashboards. Its unique aspect is its focus on Kubernetes environments, offering visibility and 

management of carbon emissions in modern containerised deployments. 

 

39https://www.cloudcarbonfootprint.org/ 
40https://codecarbon.io/ 
41https://github.com/ml-energy/zeus 
42https://aknostic.com/keit/ 

https://www.cloudcarbonfootprint.org/
https://codecarbon.io/
https://github.com/ml-energy/zeus
https://aknostic.com/keit/


 
 

Copyright © 2025 GreenDIGIT | DELIVERABLE D4.1 - State of the Art in RI and digital infrastructure sustainability and 
technologies assessment for energy efficiency and impact                                          Page 50 of 78 

 
 

6.2.3 Outcomes and Recommendations for GreenDIGIT and connection with 

its architecture 

Metrics and KPI Frameworks and Tools 

• Green Metrics Tool & SCI Specification 
o Outcomes for GreenDIGIT: Standardised measurement of SCI within GreenDIGIT services. 
o Recommendations for GreenDIGIT: Adopt SCI as a core KPI; integrate Green Metrics Tool 

into software development - Into Notebooks 
o Connection to GreenDIGIT Architecture: Provides metrics for sustainability within the 

computing layer. 

• EcoVisor 
o Outcomes for GreenDIGIT: Carbon footprint reduction through dynamic workload 

scheduling based on renewable energy availability. 
o Recommendations for GreenDIGIT: Investigate integration as an energy management 

layer; configure for GreenDIGIT energy data and renewable energy feeds. - Into DIRAC 
o Connection to GreenDIGIT Architecture: Energy management within computing and 

networking layers. 

• Cloud Carbon Footprint 
o Outcomes for GreenDIGIT: Clear understanding of carbon emissions from GreenDIGIT's 

cloud resource usage. 
o Recommendations for GreenDIGIT: Deploy to monitor cloud emissions; set up cost centre 

tagging for accurate attribution. 
o Connection to GreenDIGIT Architecture: Infrastructure level monitoring and reporting for 

cloud resources. 
Dashboard-like Tools 

• CodeCarbon 
o Outcomes for GreenDIGIT: Researcher awareness of code-level carbon footprint; 

encourages energy-efficient coding practices. 
o Recommendations for GreenDIGIT: Promote use amongst researchers; provide integration 

guidance. 
o Connection to GreenDIGIT Architecture: User/application-level tool for carbon monitoring. 

• Zeus 
o Outcomes for GreenDIGIT: Energy efficiency optimisation for AI/ML workloads within 

GreenDIGIT. 
o Recommendations for GreenDIGIT: Recommend for AI/ML research; provide specialised 

support. – Into AI4EOSC 
o Connection to GreenDIGIT Architecture: Specialised profiling for AI/ML workloads within 

the computing layer. 

• Keit (from Aknostic) 
o Outcomes for GreenDIGIT: Insights into energy consumption of containerised applications 

in Kubernetes. 
o Recommendations for GreenDIGIT: Deploy to monitor Kubernetes clusters (if applicable); 

configure for GreenDIGIT infrastructure. 
o Connection to GreenDIGIT Architecture: Infrastructure level monitoring for Kubernetes 

deployments. 
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Considering these two main categories within a VRE approach can effectively promote sustainability 

within the researcher workflow, abstracting technical complexity whilst delivering actionable and 

insightful data. 

6.3 Experiment Reproducibility Metadata Formats 

Experiment reproducibility is a cornerstone of scientific research, ensuring that results are verifiable, 

transparent, and reusable. Metadata plays a crucial role in this process, as it provides structured 

descriptions of experimental setups, execution parameters, and outcomes. Various metadata formats 

and frameworks have been proposed to facilitate the organization, sharing, and automation of 

experimental results, particularly in computer science and networking research. This document 

explores the key metadata formats that support experiment reproducibility, focusing on RO-Crate, 

FAIR principles, and structured experimental workflows. 

6.3.1 RO-Crate: A Standardized Metadata Format 

One of the leading approaches to structuring experiment metadata is RO-Crate, an initiative designed 

to encapsulate research artifacts and their associated metadata in a machine-readable and human-

readable format. RO-Crate follows the principles of the FAIR data movement, which emphasizes 

Findability, Accessibility, Interoperability, and Reusability. 

RO-Crate provides the following key features: 

• Standardized Packaging: Research artifacts (such as experiment scripts, raw data, and analysis 
results) are stored in a structured format. 

• Rich Metadata Annotations: Each experiment file or dataset is associated with metadata that 
describes its authorship, affiliations, software dependencies, hardware specifications, and 
execution environment. 

• Integration with Open Repositories: RO-Crate packages can be deposited in platforms such as 
Zenodo, ensuring long-term accessibility and referenceability. 

• Machine-Readable Descriptions: By using JSON-LD (a linked data format), RO-Crate enables 
automated processing, making it easier to validate, reproduce, and extend previous experiments 
[38]. 

 
RO-Crate has three key use cases that potentially can enhance reusability in research infrastructure 

experiments. These use cases - Autosubmit, COMPSs, and KEDO Data Lake - demonstrate how RO-

Crate facilitates experiment management, workflow execution, and data sharing. 

• Autosubmit: Autosubmit is a workflow management tool designed to orchestrate and automate 
complex climate and weather simulations across different computing platforms. By leveraging RO-
Crate, Autosubmit ensures that experiment metadata, execution environments, and dependencies 
are captured in a structured format. This enhances reproducibility and enables researchers to 
share and reuse experiment configurations effortlessly. 

• COMPSs: COMPSs (COMP Superscalar) is a programming framework that simplifies the 
development and execution of parallel applications in distributed computing environments. RO-
Crate integration allows COMPSs workflows to be packaged with all necessary metadata, input 
data, and execution logs. This ensures seamless portability and reuse of computational 
experiments across diverse RIs. 

• KEDO Data Lake: The KEDO Data Lake provides a scalable solution for storing and managing large 
datasets used in scientific research. By adopting RO-Crate, KEDO enables structured metadata 
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annotation, making datasets more discoverable, interoperable, and reusable. This facilitates 
seamless data sharing across research communities while maintaining data provenance and 
integrity. 

By adopting RO-Crate in these use cases, RIs can achieve greater experiment reproducibility, 

streamline workflow management, and foster collaboration through standardized metadata-driven 

practices. 

6.3.2 FAIR Principles and Metadata for Reproducibility 

The FAIR principles provide a foundational framework for metadata structuring. These principles 

emphasize: 

• Findability: Each experiment dataset should be uniquely identified and indexed in searchable 
repositories. 

• Accessibility: Data should be retrievable using open protocols, with metadata remaining accessible 
even if the data itself is restricted. 

• Interoperability: Metadata should use standard vocabularies to enable integration with other 
datasets. 

• Reusability: Experiments should include detailed documentation, licensing information, and 
methodological descriptions to facilitate replication. 

To align with these principles, reproducibility platforms such as plain orchestrating service (pos) and 

SLICES have adopted structured experiment workflows that enforce metadata generation at various 

stages of an experiment [39] [40]. 

6.3.3 Experiment Workflow and Metadata Structure 

A well-defined experimental workflow consists of multiple stages, each requiring specific metadata: 

1. Setup Phase: 
o Metadata includes hardware configurations, installed software, dependencies, and initial 

conditions. 
o RO-Crate and FAIR Digital Objects (FDOs) are used to document the environment. 

2. Measurement Phase: 
o Metadata includes experiment parameters (e.g. network topology, data sampling rates), 

raw measurements, and logs. 
o Formats such as Common Workflow Language (CWL) enable structured execution and 

reproducibility. 
3. Evaluation Phase: 

o Metadata includes processing scripts, statistical models, and visualization outputs. 
o Experimental outputs are structured in formats like JSON or CSV, with accompanying 

metadata ensuring clarity. 
4. Publication Phase: 

o Metadata includes authorship, affiliations, funding sources, and dataset DOIs. 
o Platforms like Zenodo and GitHub support direct integration with structured metadata 

formats. 

6.3.4 Metadata Tools and Integration 

Several tools facilitate metadata generation and management for experiment reproducibility: 

• Jeppesen: A tool used for capturing testbed hardware and network topology metadata. 
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• RO-Crate-Py: A Python library that automates the creation of RO-Crate packages for experiments. 

• LLDP (Link Layer Discovery Protocol): Used for capturing network configurations dynamically. 

• Ansible, Puppet, and Chef: Configuration management tools that automate experiment setup and 
documentation. 

Metadata is essential for ensuring reproducible experiments, and frameworks like RO-Crate and FAIR 

principles provide a structured way to achieve this. By embedding metadata into every stage of an 

experimental workflow, researchers can improve transparency, facilitate collaboration, and enhance 

the longevity of scientific findings. Future developments in metadata standards will continue to bridge 

the gap between experiment execution and data management, ensuring seamless interoperability 

across research domains. 
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7 Sustainable Software Design Practices for Scientific 

Software  

7.1 Software Sustainability Recommendations by GSF  

The GSF43 offers several sustainable software design practices that can enhance energy efficiency in 

scientific software, particularly those focused on data processing, data analytics, and workflow 

optimization. These practices aim to reduce the carbon footprint of software applications by 

emphasizing energy efficiency, carbon awareness, and hardware optimization44. 

1. Energy-Efficient Algorithm Design: Optimizing algorithms to perform tasks more efficiently can 

significantly reduce computational resource usage. For scientific software, this involves selecting or 

designing algorithms that minimize computational complexity and energy consumption. Efficient 

algorithms not only speed up data processing and analytics but also lower energy usage, contributing 

to greener software solutions. 

2. Resource Optimization and Virtualization: Efficient management of computational resources is 

crucial. Implementing virtualization techniques allows multiple applications to share the same 

hardware resources effectively, leading to better utilization and reduced energy consumption. For 

scientific workflows, this means consolidating tasks on fewer servers and leveraging cloud computing 

resources judiciously to optimize energy use. 

3. Carbon Awareness in Computing: Designing software that is aware of its carbon emissions enables 

it to make informed decisions to minimize environmental impact. This includes scheduling intensive 

data processing tasks during periods when renewable energy sources are more available or when the 

carbon intensity of the power grid is lower. By aligning computational workloads with greener energy 

availability, scientific software can reduce its carbon footprint.  

4. Efficient Data Management: Data storage and transfer consume significant energy. Implementing 

efficient data management practices, such as data compression and minimizing unnecessary data 

movement, can lead to substantial energy savings. For scientific applications dealing with large 

datasets, optimizing data handling reduces both processing time and energy consumption. 

5. Sustainable Hardware Utilization: Selecting energy-efficient hardware and ensuring that software 

is optimized for the underlying hardware can lead to better performance per watt. This includes using 

processors and storage devices designed for low power consumption and high efficiency, which is 

particularly important in data-intensive scientific computations.  

By integrating these practices into the development and deployment of scientific software, developers 

can enhance energy efficiency and contribute to environmental sustainability. The GSF provides 

 

43 https://greensoftware.foundation/ 
44 https://greensoftware.foundation/articles/10-recommendations-for-green-software-development 
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resources45 and guidelines46 to assist in adopting these green software development practices, aiming 

to reduce the environmental impact of software systems across various domains. 

7.2 The SCI Specification by GSF 

The SCI Specification47, developed by the GSF, provides a standardized methodology to calculate the 

carbon emissions associated with software systems. Its primary goal is to assist developers and 

organizations in making informed decisions to reduce the environmental impact of their software 

applications. 

Overview of the SCI Specification: 

The SCI metric quantifies the rate of carbon emissions per functional unit of a software system, 

expressed as: 

SCI = (E × I) + M / R 

Where: 

• E: Energy consumed by the software system. 

• I: Carbon intensity of the energy source. 

• M: Embodied emissions from hardware manufacturing. 

• R: Functional unit representing the software's scale (e.g. per user, per transaction). 

This formula encompasses both operational emissions (energy consumption and its carbon intensity) 

and embodied emissions (hardware production impact), normalized by the software's functional 

usage. 

Applying SCI to Complex Scientific Software in Distributed data centres: 

Scientific software often operates across multiple data centres, handling intensive data processing and 

analytics. Applying the SCI framework to such complex systems involves: 

1. Defining System Boundaries: 

o Scope Identification: Determine which components of the distributed system 

contribute to carbon emissions, including computing nodes, storage units, and 

networking equipment. 

2. Measuring Energy Consumption (E): 

o Granular Monitoring: Implement monitoring tools to capture energy usage data for 

each component across all data centres. 

o Data Aggregation: Consolidate energy consumption data to obtain a comprehensive 

view of the system's operational footprint. 

3. Assessing Carbon Intensity (I): 

o Regional Analysis: Evaluate the carbon intensity of energy sources for each data 

centre location, considering local energy grids and their reliance on renewable versus 

non-renewable sources. 

 

45 GitHub's Green Software Directory [online] https://github.com/github/GreenSoftwareDirectory 
46 https://github.com/Green-Software-Foundation/awesome-green-software 
47 https://sci.greensoftware.foundation/ 
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o Temporal Factors: Account for variations in carbon intensity due to time-of-use, as 

energy sources may shift throughout the day. 

4. Calculating Embodied Emissions (M): 

o Hardware Inventory: Document all hardware components, noting their 

manufacturing emissions. 

o Lifecycle Assessment: Estimate emissions based on hardware production, 

transportation, and expected lifespan. 

5. Determining the Functional Unit (R): 

o Usage Metrics: Define a functional unit that reflects the software's purpose, such as 

computations per second, data processed per hour, or user sessions. 

6. Computing the SCI Score: 

o Integration: Apply the SCI formula using the collected data to calculate the carbon 

intensity per functional unit. 

o Continuous Monitoring: Regularly update the SCI score to reflect changes in energy 

consumption, hardware upgrades, or shifts in workload distribution. 

Challenges and Considerations: 

• Data Availability: Accurate SCI calculation requires detailed energy consumption and carbon 

intensity data, which may not always be readily accessible, especially in public cloud 

environments. Collaborating with service providers to obtain this information is crucial. 

• Complexity of Distributed Systems: The dispersed nature of scientific applications 

necessitates a coordinated approach to data collection and analysis across all operational 

regions. 

• Dynamic Workloads: Fluctuations in computational demand can affect energy usage patterns, 

requiring adaptive strategies to maintain an accurate SCI assessment. 

By systematically applying the SCI Specification, organizations can identify emission hotspots within 

their scientific software systems and implement targeted optimizations. This proactive approach not 

only aids in achieving sustainability goals but also promotes operational efficiency and cost savings. 

7.3 Sustainable Architecture Design Practices by Cloud Providers 

AWS and Microsoft Azure 

The two leading cloud and Big Data services providers AWS and Microsoft Azure provide advanced 

resources and services to address the whole spectrum of requirements in designing, deploying and 

operating cloud based services spanning from front-end user services and large scale cloud based user 

focused services to advanced services that include IoT, sensor network, edge computing, data 

collection and management, and computation for data analytics and GenAI services. The technologies 

used and offered by large cloud providers are advanced and are at the frontline of the technologies 

developments. Both cloud providers are committed to address the sustainability aspects of their 

infrastructure and services offered to their customers, providing also necessary design optimisation 

for customer applications supported by extensive monitoring and fine grained metrics together with 

services and resources control and management possibilities. Knowing and understanding the 

technologies, solutions and tools provided by cloud providers is beneficial for effective applications 

and solutions development for digital RIs, which are generically based on whole spectrum of IoT-edge-
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cloud continuum of technologies. However, due to Azure and AWS’ strong business orientation finding 

necessary and relevant technical information may be difficult. Presented in this section is an overview 

of the sustainability design principles and corresponding services formulated by Azure and AWS is 

intended to provide a guidance for developers of advanced cloud based scientific applications on using 

State of the Art technologies and architecture design principles, this is supported by references to 

necessary AWS and Azure resources for further study. 

7.3.1 Microsoft Azure Sustainability Framework and Sustainability Design 

Principles 

Microsoft’s Azure Sustainability framework is a complex of architecture and design principles proposed 

by Microsoft Azure’s Well-Architected Framework48 aim to optimize software development, workflow 

execution, storage efficiency, and cloud resource usage to minimize carbon emissions and energy 

consumption. It provides a structured approach to reducing the environmental impact of cloud-based 

applications, focusing on energy-efficient software design, workflow optimization, storage 

management, and cloud resource utilization. By integrating carbon-aware computing principles, Azure 

enables developers and businesses to make more sustainable choices in how they design, deploy, and 

manage digital workloads. 

A key principle in sustainable application design is minimizing unnecessary compute operations 

through optimized software architecture, microservices, and cloud-native execution models. Azure 

promotes event-driven serverless computing and containerized workloads, allowing applications to 

scale dynamically while reducing idle resource consumption. Developers are encouraged to use 

caching, optimize API calls, and structure applications to reduce processing overhead, ultimately 

lowering energy use and emissions. 

Beyond application architecture, workflow optimization plays a critical role in sustainability. Azure 

enables carbon-aware scheduling, where AI-driven tools shift computational workloads to low-carbon 

energy periods or regions with cleaner energy grids. This approach is particularly effective for batch 

processing, ML training, and large-scale analytics, ensuring that intensive computations are performed 

with minimal environmental impact. Additionally, auto-scaling and adaptive resource allocation ensure 

that cloud resources are only used when needed, preventing over-provisioning and reducing overall 

energy waste. 

Azure’s approach to storage sustainability emphasizes efficient data management, leveraging tiered 

storage models to classify data based on usage frequency. By compressing files, reducing redundant 

storage, and implementing intelligent data retention policies, organizations can cut down on 

unnecessary storage-related energy consumption.  

The efficient use of cloud computing resources is another cornerstone of Azure’s sustainability 

strategy. By deploying workloads in regions powered by renewable energy, leveraging spot instances 

and burstable VMs, and using edge computing to minimize long-distance data transfers, cloud users 

can significantly reduce their carbon footprint. Serverless platforms and AI-driven workload 

 

48 https://learn.microsoft.com/en-us/azure/well-architected/ 
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optimizations further enhance resource efficiency, allowing applications to dynamically adjust to 

demand without consuming unnecessary power. 

In general, Azure’s sustainability architecture provides a roadmap for building energy-efficient 

applications and optimizing cloud operations. By integrating carbon-aware computing, adaptive 

resource management, and sustainable storage strategies, organizations can lower emissions while 

maintaining high-performance digital services. Through business focused offering like Microsoft Cloud 

for Sustainability49, businesses can track their impact in real-time and make data-driven decisions to 

move toward net-zero cloud operations. This is well presented in the Sustainability Guide50 that 

provides also useful information for making decision technology selection. 

The following structured text summarises the main sustainability aspects addressed in the Azure Well-

Architected Framework with related technologies and services available from Azure (including also 

reference to related blog articles). 

1. Software and Application Design Principles for Sustainability51  
Microsoft advocates for a green software approach, which aligns with the GSF’s principles to ensure 

applications are developed with energy efficiency, carbon awareness, and hardware efficiency in mind. 

• Carbon Efficiency: Applications should minimize resource consumption by using optimized 
infrastructure and cloud-native services, reducing unnecessary compute and memory overhead. 

• Energy Efficiency: Developers should optimize code execution by reducing redundant processing, 
improving API efficiency, and implementing microservice architectures to allow independent 
scaling of application components. 

• Carbon Awareness: Applications can be programmed to execute computationally intensive 
workloads during periods of low-carbon energy availability, leveraging Azure’s regional carbon 
intensity tracking to schedule workloads dynamically. 

• Hardware Efficiency: Software should be compatible with older devices to extend hardware 
lifecycles and avoid unnecessary hardware replacements. 

• Key Technologies: 

• Microservices over Monolithic Design: Enables scalable, event-driven applications that dynamically 
adjust to demand. 

• Server-side Rendering and Caching: Reduces energy-intensive client-side processing by leveraging 
pre-rendered content and data caching techniques. 

• Cloud-native Design Patterns: Implements serverless computing and containerization to efficiently 
utilize shared cloud resources. 

 

49 https://www.microsoft.com/en-us/sustainability/cloud 
50 https://www.microsoft.com/en-us/sustainbility/sustainability-guide 
51 Design principles of a sustainable workload - https://learn.microsoft.com/en-us/azure/well-

architected/sustainability/sustainability-design-principles 

https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-design-principles
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-design-principles
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2. Workflow Management for Energy Efficiency and Reduced Environmental Impact5253 
Optimizing the workflow execution is critical to reducing unnecessary computation and energy use. 

Microsoft emphasizes: 

• Demand Shifting: Scheduling workloads to execute during periods of renewable energy availability 
reduces carbon emissions. 

• Auto-scaling and Right-sizing: Dynamically adjusting compute resources based on demand 
prevents over-provisioning. 

• Batch Processing During Low-carbon Periods: Computationally intensive tasks such as data 
analytics and AI model training should be scheduled when energy grids rely more on renewable 
sources. 

• Adaptive Resource Allocation: Workloads should be migrated to Azure data centres with lower 
carbon intensity, ensuring optimal energy use. 

• Deployment and Testing54: Run integration, performance, load, or any other intense testing during 
low-carbon periods, Establish CPU and Memory thresholds in testing 

Key Technologies: 

• Azure Monitor and AI-driven Auto-scaling: Dynamically adjusts computing power to match 
workload demand. 

• Azure Kubernetes Services (AKS) and Serverless Computing: Supports event-driven execution, 
reducing idle compute resource waste. 
 

3. Storage Optimization for Sustainable Cloud Computing55 
Storage solutions play a significant role in cloud sustainability, and Microsoft’s Azure Well-Architected 

Framework provides a structured approach to optimizing data storage and retrieval. 

• Storage Tiering: Frequently accessed data should reside in hot storage, while cold or archive 
storage should be used for infrequent data access, reducing energy-intensive storage operations. 

• Compression and Deduplication: Efficient data storage can be achieved by compressing large files 
and eliminating redundant copies, significantly reducing storage footprint. 

• Retention Policies and Smart Backup Strategies: Data backups should be strategically planned to 
avoid storing unnecessary logs or redundant copies, minimizing storage-related energy 
consumption. 

• Log Optimization: Cloud applications should log only necessary data and avoid excessive data 
retention that leads to increased storage and processing overhead. 

Key Technologies: 

• Azure Blob Storage with Hot/Cold/Archive Tiers: Enables energy-efficient storage classification. 

• Microsoft Purview for Data Governance: Implements data retention policies to eliminate 
unnecessary storage use. 

 

52 Application design of sustainable workloads on Azure - https://learn.microsoft.com/en-

us/azure/well-architected/sustainability/sustainability-application-design 
53 Application platform considerations for sustainable workloads on Azure - https://learn.microsoft.com/en-
us/azure/well-architected/sustainability/sustainability-application-platform 
54 Testing considerations for sustainable workloads on Azure - https://learn.microsoft.com/en-us/azure/well-
architected/sustainability/sustainability-testing 
55 Data and storage design considerations for sustainable workloads on Azure – 

https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-storage 

https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-application-design
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-application-design
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-application-platform
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-application-platform
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-storage
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• Azure Monitor Logs and Compression Strategies: Reduces redundant log storage and optimizes log 
retrieval efficiency. 

4. Cloud Computing Resource Utilization and Carbon Awareness (refer to previously linked blog 
articles) 

Microsoft emphasizes efficient cloud resource utilization to lower energy consumption. Several 

strategies are recommended: 

• Optimized VMs: Use auto-scaling and spot instances to prevent underutilized compute resources. 

• Regional Carbon Intensity Awareness: Applications should be deployed in Azure regions where 
data centres use renewable energy, reducing the carbon footprint. Connected to Microsoft 
Emissions Impact Dashboard (EID)56 to Microsoft Sustainability Manager (MSM)57 instance 

• Serverless and Platform-as-a-Service (PaaS) Workloads: Instead of managing dedicated VMs, 
serverless computing allows resources to scale on-demand, reducing idle resource consumption. 

• Edge Computing and CDNs: Reducing data transfers between cloud regions by caching content 
closer to users minimizes network-related emissions. 

Key Technologies: 

• Azure Spot VMs and B-Series Burstable Instances: Reduce carbon impact by using idle compute 
capacity. 

• Azure Carbon-aware Scheduling and Low-carbon Data centres: Enable region-based workload 
execution for sustainability. 

• AKS for Bin Packing: Optimizes VM utilization by grouping workloads efficiently. 

Microsoft’s Azure Sustainability Architecture provides a robust framework for organizations to reduce 

the carbon footprint of their cloud operations. By following sustainable application design principles, 

optimizing workflows, implementing storage best practices, and leveraging carbon-aware cloud 

computing, organizations can significantly improve their energy efficiency and environmental 

sustainability. The Microsoft Cloud for Sustainability platform offers real-time tracking and 

optimization tools that help companies achieve net-zero cloud computing operations, making energy-

efficient cloud computing more accessible and scalable. 

7.3.2 AWS Sustainability Design Principles of the AWS Well-Architectured 

Framework 

AWS has developed a Sustainability Pillar58 as part of its Well-Architected Framework59, providing best 

practices to reduce the environmental impact of cloud workloads. This framework focuses on software 

design principles, workflow management, storage optimization, and efficient cloud resource utilization 

to help organizations build sustainable and energy-efficient cloud architectures. Below we summarise 

 

56 Measure your cloud carbon footprint with the Emissions Impact Dashboard for Microsoft 365 - 
https://techcommunity.microsoft.com/blog/microsoft_365blog/measure-your-cloud-carbon-footprint-with-
the-emissions-impact-dashboard-for-micr/3144426 
57 Microsoft Sustainability Manager overview - https://learn.microsoft.com/en-
us/industry/sustainability/sustainability-manager-overview 
58 Sustainability Pillar - AWS Well-Architected Framework - 
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html 
59 AWS Well-Architected Framework - https://aws.amazon.com/architecture/well-architected/ 
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the AWS architecture design principles for sustainability with reference to AWS technology solutions 

and cloud services. 

Software and Application Design for Sustainability 

AWS emphasizes energy-efficient software development by encouraging organizations to optimize 

resource utilization, minimize redundancy, and use carbon-aware cloud computing. Applications 

should be designed with dynamic scaling, workload consolidation, and event-driven processing to 

reduce unnecessary resource consumption. 

A key principle is maximizing utilization, ensuring that compute, storage, and network resources are 

fully utilized before scaling up infrastructure. AWS recommends using managed services, such as AWS 

Lambda for serverless execution and AWS Fargate for containerized applications, to minimize idle 

resource usage. Additionally, newer energy-efficient hardware options, such as AWS Graviton 

processors60 and AWS Inferentia AI chips61, enable higher performance per watt, reducing overall 

energy demand. 

AWS offers SageMaker62 as a powerful cloud based IDE for ML and AI applications development. 

SageMaker provides functionality for ML models deployment as a part of the MLOps environment and 

process63, connecting to multi-model endpoints for ML inference, which allow multiple models to share 

a single endpoint, reducing unnecessary compute resource duplication. 

For ML workloads, AWS suggests adopting pre-trained models and transfer learning instead of training 

large models from scratch, significantly reducing carbon footprint and training costs. The Amazon 

SageMaker Training Compiler64 further optimizes GPU and CPU utilization, cutting down processing 

time and energy consumption. 

Workflow Management for Energy Efficiency 

AWS promotes carbon-aware scheduling for workload execution, where tasks are shifted to times and 

regions with low-carbon energy availability. This ensures optimal workload execution with the lowest 

environmental impact. Services like AWS IoT Greengrass enable local inference, reducing the need for 

continuous cloud interactions. For AI/ML workloads, AWS recommends batch processing and edge 

computing together with using pre-trained models to reduce unnecessary data transfers and 

computation, especially in the model development stage65.  

 

60 https://aws.amazon.com/ec2/graviton/ 
61 https://aws.amazon.com/ai/machine-learning/inferentia/ 
62 Amazon SageMaker - https://docs.aws.amazon.com/sagemaker/ 
63 https://aws.amazon.com/what-is/mlops/ 
64 Amazon SageMaker Training Compiler- https://docs.aws.amazon.com/sagemaker/latest/dg/training-
compiler.html 
65 https://aws.amazon.com/blogs/architecture/optimize-ai-ml-workloads-for-sustainability-part-2-model-
development/ 
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Storage Optimization for Reduced Environmental Impact66 

AWS advocates tiered storage management, ensuring that data is stored based on access frequency 

and long-term retention needs. 

Best practices include: 

• Using Amazon S3 Intelligent-Tiering to automatically move infrequently accessed data to lower-
energy storage classes. 

• Compressing and deduplicating data to reduce storage footprint and eliminate redundant copies. 

• Minimizing log retention and automating data lifecycle management to delete obsolete data. 
For database workloads, AWS recommends serverless databases such as Amazon Aurora Serverless, 

which dynamically scales based on workload demand, reducing idle database instances. 

Efficient Use of Cloud Compute Resources67 

AWS encourages organizations to right-size their compute instances, ensuring that resources are not 

over-provisioned. 

Key strategies include: 

• Using energy-efficient AWS Graviton-based instances, which offer better performance per watt 
than traditional x86 instances. 

• Deploying workloads in AWS regions with renewable energy sources, reducing reliance on fossil-
fuel-powered data centres. 

• Employing AWS Trainium and Inferentia chips for AI/ML inference, which significantly cut down 
power consumption. 

• Reducing data movement across networks by using AWS Direct Connect and edge computing 
solutions. 

In summary, AWS provides a structured approach to sustainable cloud computing, enabling 

organizations to design, deploy, and manage workloads with minimal environmental impact. Through 

efficient software design, intelligent workload scheduling, storage optimization, and energy-conscious 

compute resource allocation, AWS helps businesses achieve their sustainability goals while 

maintaining high performance. 

7.3.3 AWS Sustainability Design Principles and Recommended Architecture 

Styles 

Understanding and applying right architecture style for applications and system design provides 

multiple benefits with sustainability as one benefits. The topic of the software architecture styles and 

system architecture styles is sufficiently supported by multiple technical blog articles68 69 and one of 

 

66 https://aws.amazon.com/blogs/architecture/optimizing-your-aws-infrastructure-for-sustainability-part-ii-
storage/ 
67 https://aws.amazon.com/blogs/architecture/optimizing-your-aws-infrastructure-for-sustainability-part-i-
compute/ 
68 https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/ 
69 https://medium.com/@learnwithwhiteboard_digest/all-major-software-architecture-patterns-explained-
8ed6b50a16e3 



 
 

Copyright © 2025 GreenDIGIT | DELIVERABLE D4.1 - State of the Art in RI and digital infrastructure sustainability and 
technologies assessment for energy efficiency and impact                                          Page 63 of 78 

 
 

blog articles at Medium forum provides the most complete reference of software architecture styles70. 

The recent author papers [41] [42] provided summary and suggestions about architecture styles 

generally suitable for such projects as digital RIs and complex scientific applications. 

AWS promotes sustainability through energy-efficient cloud architecture, integrating sustainability 

principles into software design, workflow execution, storage management, and compute resource 

allocation. By selecting the right architecture styles, organizations can maximize energy efficiency and 

reduce their cloud-based environmental impact. The following text provides a summary and 

suggestions based on the referenced above AWS technical blog posts. 

1. Sustainability Design Principles in AWS Well-Architected Framework 
AWS outlines key sustainability principles to help organizations reduce the carbon footprint of cloud 

workloads: 

A. Optimize Utilization & Reduce Waste 
Design applications to fully utilize allocated resources before scaling up. This reduces idle capacity and 

energy waste. 

Best Architecture Styles: Serverless, Microservices, and Event-Driven Architectures 

• Serverless computing (e.g. AWS Lambda) ensures compute resources are only used when needed. 

• Microservices architectures improve efficiency by decoupling services, avoiding monolithic 
inefficiencies. 

• Event-driven models (e.g. AWS Step Functions) eliminate always-on infrastructure, improving 
energy utilization. 
 

B. Use Managed Services to Reduce Operational Overhead 
AWS fully-managed services optimize hardware utilization across multiple tenants, reducing energy 

consumption per user. 

Best Architecture Styles: Managed Cloud-Native & SaaS-Based Architectures 

• Using AWS Fargate for containers or Aurora Serverless for databases minimizes idle resource 
waste. 

• Cloud-native architectures leverage auto-scaling to efficiently match demand. 
 

C. Optimize Workload Execution for Energy Efficiency 
Applications should schedule workloads in energy-optimal locations and times based on grid carbon 

intensity. 

Best Architecture Styles: Edge Computing, Hybrid Cloud, and AI-Driven Workload Scheduling 

• Edge computing (AWS IoT Greengrass) moves processing closer to users, reducing cloud data 
transfers. 

• Hybrid cloud architectures allow workloads to run on-premises when energy-efficient and move 
to AWS when needed. 

• AI-based carbon-aware scheduling shifts workloads to AWS regions with renewable energy 
availability. 
 

D. Optimize Storage and Data Transfer 

 

70 https://medium.com/bytebytego-system-design-alliance/the-architects-blueprint-understanding-software-
styles-and-patterns-with-cheatsheet-5c1f5fd55bbd 
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Storing and transferring data more efficiently reduces storage costs, energy use, and network traffic. 

Best Architecture Styles: Data Mesh & Federated Data Processing 

• Data mesh architecture reduces data duplication and improves energy efficiency. 

• Amazon S3 Intelligent-Tiering moves data to lower-energy storage automatically. 

• Federated data processing allows data to be processed at the source, reducing transfer-related 
energy costs. 
 

2. Architecture Styles and Their Benefits for Energy Efficiency 
A. Serverless Architectures (e.g. AWS Lambda, Fargate) 
Serverless computing eliminates the need for provisioned infrastructure, using only the required 

compute capacity. Energy Benefits: 

• Reduces idle energy consumption – no constantly running servers. 

• Scales automatically, adjusting to demand. 

• Lower hardware footprint – shared across multiple workloads. 
 

B. Microservices Architectures (e.g. Amazon ECS, API Gateway) 
Applications are broken into smaller, independent services, ensuring more efficient scaling. Energy 

Benefits: 

• Prevents over-provisioning – services scale independently. 

• Reduces resource waste by only running the necessary components. 

• Compatible with auto-scaling, making it energy-efficient. 
 

C. Event-Driven & Asynchronous Architectures (e.g. AWS Step Functions, SNS/SQS) 
Workloads are triggered only when needed, reducing constant polling and CPU waste. Energy Benefits: 

• Eliminates unnecessary background processing. 

• Better suited for burst workloads, minimizing idle power consumption. 

• Efficient use of compute resources, especially for ML and IoT workloads. 
 

D. Edge Computing & Hybrid Cloud (e.g. AWS Wavelength, AWS IoT Greengrass) 
Processes data closer to the user, reducing cloud round trips and improving network energy efficiency. 

Energy Benefits: 

• Minimizes cloud data transfer, lowering carbon emissions. 

• Uses local resources first, shifting to AWS only when needed. 

• Improves application responsiveness while consuming less power. 
 

E. Data Mesh & Federated Learning (e.g. Amazon S3, AWS SageMaker) 
Allows distributed data storage and processing, reducing the need for centralized cloud operations. 

Energy Benefits: 

• Lowers energy-intensive data transfers across multiple regions. 

• Enables efficient, localized AI training, reducing cloud compute costs. 

• Optimizes storage tiers, ensuring high-performance data retrieval with minimal energy impact. 
 

By aligning AWS sustainability design principles with energy-efficient architectures (defined by 

Architecture Styles), organizations can optimize cloud workloads while minimizing environmental 

impact. 

• Serverless and Microservices reduce idle capacity and scale dynamically, eliminating unnecessary 
energy use. 
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• Event-driven and asynchronous workflows ensure computing only happens when needed. 

• Edge computing and hybrid cloud models shift workloads closer to the user, improving energy 
efficiency. 

• Data mesh and federated learning optimize data storage and transfer, reducing cloud dependency. 
 

AWS provides a range of sustainable cloud solutions that allow organizations to design energy-efficient 

architectures without compromising scalability or performance. As cloud adoption grows, selecting the 

right architecture will be critical to achieving sustainability goals. Learning from AWS can help RI and 

cloud based services developers to implement effective solutions on their platforms. 

7.4 Software Energy Efficiency Tactics and Application to Scientific 

Software 

A potentially useful approach to the general aspects of scientific software design is proposed in the 

papers by Patricia Lago (Vrije Universiteit Amsterdam) that explore multiple facets of sustainability in 

cloud computing, software architecture, and ML systems. One of her key studies focuses on optimizing 

energy efficiency in the public cloud. The papers identify a set of reusable architectural tactics aimed 

at cloud consumers rather than providers [43]. Through interviews with industry professionals, the 

authors outline methods such as dynamic scaling, workload migration, and energy-aware scheduling, 

emphasizing that cloud users must take active measures to optimize software for energy efficiency, 

despite the lack of transparency in cloud energy consumption reporting. 

Another major contribution examines green architectural tactics for ML-enabled systems, addressing 

the growing energy demands of AI applications [44]. The authors synthesize thirty tactics from an 

extensive literature review and validate them with industry experts. Their findings emphasize reducing 

model complexity, optimizing data preprocessing, and leveraging energy-efficient hardware to 

mitigate the carbon footprint of ML workflows. This study highlights the tension between accuracy-

driven AI development and sustainable computing practices, advocating for a balanced approach 

where performance does not come at an unsustainable energy cost. 

In a broader survey of software energy efficiency tactics [45], the authors/researchers collaborate on 

a systematic review of 163 tactics extracted from over 140 studies. The research shows that interest 

in energy-efficient software peaked in 2015 but has since declined and that most existing tactics focus 

on code-level optimisations or dynamic monitoring. However, industry adoption remains low due to a 

disconnect between academic research and real-world implementation, with many developers 

unaware of software energy consumption or lacking practical tools to address it. The methodology 

used in the paper can be used for a new study to understand the software development companies 

attitude at the present time with the growing importance of sustainability and reduced environmental 

impact in the whole digital ecosystem. 

Table 1 provides a mapping of energy efficiency software design tactics to scientific software design 

that can be further discussed and applied in project development. 

Table 1. Mapping Energy Efficiency design tactics to Scientific Software Design 

Category Proposed Tactics Applicability to Scientific Software Design 

Resource 
Monitoring 

- Automatic monitoring of workload 
efficiency  

Highly relevant: Scientific software often 
involves large-scale data processing and 
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- Experimentation with alternative 
architectures 

benefits from automated performance 
monitoring to optimize energy 
consumption. 

Resource 
Allocation 

- Dynamic scaling (horizontal & 
vertical) 
- Task scheduling for energy 
efficiency 
- Workload migration 

Highly relevant: Scientific workflows often 
involve HPC, cloud, and edge computing. 
Scheduling and workload migration are 
critical for energy savings. 

Resource 
Adaptation 

- Self-adaptive resource 
management 
- Reducing computation redundancy 
- Efficient data caching and storage 

Highly relevant: Many scientific workflows 
involve iterative computations and large 
data transfers. Adaptation techniques can 
reduce duplicate computations and data 
movement overheads. 

Green AI/ML 
Tactics 

- Reducing ML model complexity 
- Efficient data preprocessing 
- Energy-efficient training (e.g. TPU, 
GPU) 

Partially relevant: Applicable only if 
scientific software uses ML-based analysis 
(e.g. bioinformatics, climate modeling). 

Cloud Data 
Storage KPIs 

- Storage efficiency monitoring  
- Minimizing "dark data"  
- Energy-efficient replication 

Highly relevant: Scientific datasets are 
large, and reducing unnecessary storage 
and replication is crucial. 

 

The recent paper [46] is focused on the cloud distributed  data storage energy efficiency aspects, that 

the study defines key performance indicators (KPIs) for monitoring the energy efficiency of cloud-

based storage systems. The study proposes three primary KPIs—energy consumption, storage 

utilization, and capacity per watt—offering a structured approach to track and optimize data storage 

efficiency. The research underscores the critical role of cloud storage in the growing energy footprint 

of data centres and calls for greater transparency in cloud providers' sustainability metrics. 

The summarised papers may provide an approach to bridge the gap between theoretical research and 

practical implementation, providing actionable frameworks for software architects, cloud users, and 

data scientists to make more energy-efficient design choices. The surveyed research underscores the 

urgent need for sustainability in software engineering, advocating for energy-aware architectures, 

smarter cloud resource management, and transparent energy reporting mechanisms to reduce the 

environmental impact of digital infrastructures. This is also linked to the research on the 

integrated/multi-factor energy monitoring in complex digital infrastructures discussed in section 6.1. 
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8 Data Management 

8.1 Sustainability aspects in data management 

Sustainability aspects in data management are not well defined and implemented in the research 

community. Current trends in research data management are primarily focused on ensuring efficient 

data management, including data, documenting, storing and sharing, what is best defined by FAIR data 

principles for research data that should ensure that data are FAIR. FAIR compliance provides a basis 

for the sustainability of data storage, sharing and contributes to the reproducibility of research and 

interdisciplinary research that require well-documented data and reliable/guaranteed data access with 

the possibility of their use/integration in future research, with potentially wider scope than initially 

created data.  

However, sustainability aspects in building and operating DMI are primarily discussed and addressed 

by industry and, in particular, Big Data and cloud service providers. This section provides an overview 

of existing publications related to both sides/aspects in relation between data management and 

sustainability. 

Sustainability aspects in data management are considered in two main aspects:  

1. Data management practices and recommendations to support organisational measures and 
processes to support energy efficiency and environmental sustainability.  

2. Infrastructure and architecture-related approaches to ensure energy efficiency and environmental 
sustainability (reduce environmental impact or CO2 footprint) of the DMI and related services to 
support its corresponding operation. These aspects must be addressed by applying necessary 
infrastructure and system design principles. 

There are known approaches and frameworks being developed and implemented by companies and 

operators that deal/require extensive/large scale data management related infrastructure services. 

This relates to necessary DMI for cloud services providers, data analytics applications, and emerging 

GenAI and Large Language Model (LLM) applications that besides requiring strong computational 

ability also must supported by distributed and multilayer data storage and access infrastructure (that 

includes/require access to raw and training dataset, well attributed models, knowledge bases, and 

semantic caching). 

8.2 Data management recommendations and practices to support 

energy efficiency and environmental sustainability. 

This also relates to research infrastructure and services that are focused on monitoring and protecting 

the environment and ecosystems. Well-established data management must ensure that data are well 

documented, reliably stored and maintained, and provide sufficient functionality for efficient data 

sharing. For modern digital RIs and wide research communities, these solutions and practices should 

comply with the FAIR data principles and be supported with well-defined metadata registries and 

WebAPI. 

Valuable overview and analysis provided by the Dutch Coalition for Sustainable Digitalisation 

(Nederlands Coalitie Duurzame Digitalisering (NCDD) [47] [48]). Sustainable data management has 

therefore emerged as a critical strategy for organizations to address the environmental footprint of 

their data lifecycle. Sustainable data management is not just a technical or operational issue; it is a 
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strategic imperative at the executive level as well as a cultural mind shift. This paper uses the DMBoK71 

phases to address the sustainability considerations in all the phases of your data lifecycle, from 

planning, creation until the data is destroyed. 

NCDD also provides a reference to the position paper published by the group of Prof Patricia Lago (Vrije 

Universiteit Amsterdam) that has long time experience from years of active research 2010-2022 on the 

sustainability of software based applications and related infrastructure components. The referred 

paper of 2021 provided valuable analysis and an overview of disruptive technologies that are 

transforming industries, this defined as the Lower Energy Acceleration Program (LEAP) [49]. This guide 

helps stakeholders who want to contribute to building a future-proof energy-efficient digital 

infrastructure to identify and understand technology trends. Through in-depth analysis and up-to-date 

information, the LEAP Technology Landscape supports decision-makers and innovators in accelerating 

innovation. 

The current approaches to sustainability data management are analysed in the one of industry leading 

companies dealing with environmental, social, and governance (ESG) related data management [50]. 

Current data management practices are largely ad-hoc within the enterprises, alarming for a shift from 

reactive to proactive methods. In addition, companies need to collaborate to manage their 

sustainability data efficiently (e.g. having common standards and definitions), since it becomes more 

difficult to survive as a sole fighter. Therefore, Competence Centre Corporate Data Quality (CC CDQ) 

launches co-innovation group to elaborate on these issues and to join forces in developing a scalable 

approach to sustainability data management. In this close collaboration between researchers and 

practitioners, the group will address various sustainability scenarios (e.g. carbon footprint along the 

supply chain, supplier qualification, and product labelling), the underlying data requirements, as well 

as the data management capabilities for sustainability.   

Science Europe’s Practical Guide to Sustainable Research Data [51] offers complementary maturity 

matrices for funders, performers, and data infrastructures to create a common understanding of the 

approaches needed by the different stakeholders involved. It will support the alignment of policies and 

requirements for sustainable research data. 

Sustainable Research Data Sharing and re-using data to reproduce research and build upon it, are a 

cornerstone of Open Science. The sustainability of research data refers to their long-term preservation, 

accessibility, and interoperability. It is something that needs to be addressed by everyone involved. 

Aligned policies and requirements can limit the collective effort needed and increase the usefulness of 

research data management. 

This Practical Guide provides guidance to ensure the long-term preservation and accessibility of 

research data. Three complementary maturity matrices provide funders, performers, and data 

infrastructures with a way to create a common understanding of the approaches needed. These allow 

them to evaluate the current status of their policies and practices, and to identify next steps towards 

sustainable data sharing and seeking alignment with other organisations in doing so.  

 

71 DMBoK is a Data Management Body of Knowledge defined by the Data Management Association International (DAMAI). 
It is considered as industry standard accepted by majority of companies dealing with the data management in their 
business and operations. 
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8.3 Reducing energy consumption and environmental impact of the 

DMI  

Data Dynamics company [52] provides a valuable introduction briefing on their view on 

environmentally sustainable data management that should balance the growth of data infrastructure 

with environmental responsibility. This includes the following key points: 

1. Environmental Impact of data centres. Data centres contribute 2 % of global carbon emissions, 
with the US responsible for 0.5 %. The growing demand for digital services and exponential rise in 
unstructured data strains resources and increases environmental concerns. 

2. Challenges with Unstructured Data: Unstructured data accounts for 80 % of stored data, much of 
which is unused or redundant ("dark data"), consuming energy unnecessarily. Organizations need 
to shift from indiscriminate data storage to strategic analysis, reducing clutter and environmental 
impact. 

3. Strategies for Sustainable Data Management. 

• Hybrid Cloud Adoption, combining on-premises and cloud resources for optimized storage and 
reduced carbon footprints. 

• Data tiering ensures critical data is stored on-premises while less-used data is migrated to energy-
efficient cloud environments. 

4. Data Minimization: Reduces redundant, obsolete, and trivial data through governance, audits, and 
lifecycle management. Adopting technologies like data deduplication and compression enhances 
storage efficiency and lowers energy use. 

5. Unified Data Management (UDM) supported by necessary tools for actionable data insight and 
use, employs AI, ML, and automation to streamline data operations securely and efficiently. 

Dataversity company that is primarily focused on professional training on enterprise data management 

[53], highlights the growing environmental impact of digital data and the necessity of sustainable data 

management to mitigate it. The following aspects need to be addressed:  

Environmental Impact of Data and IT Infrastructure 

• Data growth: The exponential increase in digital data requires vast energy resources for storage, 
processing, and transmission, contributing to carbon emissions and resource depletion. 

• E-Waste: Manufacturing and disposal of electronic devices create hazardous waste, harming 
ecosystems and human health. 

Strategies for Sustainable Data Management 

• Energy-Efficient data centres: Incorporate advanced cooling technologies, renewable energy 
sources (solar, wind, hydroelectric), and energy-efficient hardware to minimize energy 
consumption and carbon emissions. 

• Cloud Computing: transitioning to sustainable cloud platforms leverages energy-efficient, large-
scale data centres and reduces organizational carbon footprints. 

• Data Optimization: Implement data compression, deduplication, and lifecycle management to 
reduce redundant and obsolete data.  

• Waste Management: Embrace a circular economy through refurbishing, recycling, and proper 
disposal of outdated equipment. 

• Governance and Compliance Data Governance: Establish policies ensuring efficient, secure, and 
transparent data handling while meeting regulatory and ethical standards. 

Certifications:  
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• Achieving certifications like Leadership in Energy and Environmental Design (LEED), Energy Star, or 
EPAT demonstrates commitment to sustainable practices. 

Technological and Operational Advancements 

• Green Computing: environmentally friendly technologies, including energy-efficient hardware, 
virtualization, and renewable energy integration.  

• UDM: tools like UDM enhance data quality, integration, and visibility, enabling better decision-
making and sustainability.  

• Metrics and Future Outlook Real-time monitoring of energy consumption, emissions, and waste 
ensures compliance and enables targeted sustainability measures. The importance of sustainable 
data management is expected to grow in 2024, driven by data value, regulatory changes, and 
environmental concerns. 

The principles of sustainable data management align with reducing environmental impact while 

supporting business growth, paving the way for a greener digital future. 
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9 Ongoing Research on Sustainability in RIs 

Sustainability in RIs revolves around their ability to provide cutting-edge services while adhering to 

principles of environmental, economic, and social responsibility. According to Demchenko et al., 

sustainable RIs require well-defined architectural principles that ensure long-term evolution and 

integration of modern technologies, addressing the lifecycle of resources from development to 

decommissioning [54]. Another paper emphasizes that adopting green infrastructure practices, such 

as renewable energy and resource-efficient technologies, can significantly reduce the ecological 

footprint of RIs while fostering socio-economic benefits [55]. 

Case studies like SLICES-RI highlight the importance of integrating digital and data-driven solutions to 

enhance operational efficiency while maintaining sustainability [54] [55]. A comprehensive framework 

for sustainable RIs includes policies promoting energy-efficient infrastructure, federated data 

management, and lifecycle-oriented design principles [55]. However, challenges persist in balancing 

high performance with sustainability, particularly as advanced computational needs increase energy 

consumption and resource dependency. Effective strategies, such as leveraging multi-functional green 

infrastructure and integrating AI-driven resource optimization, are crucial to maintaining this 

equilibrium while achieving broader sustainability goals.  

9.1 Evaluation and Comparative Analysis 

The evaluation of sustainability in RIs necessitates a comprehensive analysis of their environmental 

impact, especially regarding energy consumption, resource utilization, and waste production. Current 

practices, while effective in operational terms, often contribute significantly to greenhouse gas 

emissions and resource inefficiency. The adoption of green infrastructure, as highlighted in , represents 

a pivotal strategy for sustainable development, leveraging natural systems to reduce ecological 

footprints while providing economic and social benefits. 

Technology Readiness Levels (TRLs) for sustainable solutions vary widely, with innovative approaches 

like renewable energy-powered data centres and advanced cooling systems reaching higher TRLs (7-9) 

in some applications, while others remain in early development stages (TRL 4-6). A comparative 

analysis of technologies reveals key trade-offs: for instance, while green roofs and permeable 

pavements significantly mitigate urban heat islands and water runoff, their implementation costs can 

be a barrier. Similarly, AI-driven resource optimization tools improve energy efficiency but demand 

substantial adaptation of existing infrastructures. As emphasized in [55], effective planning and 

investment in green technologies are crucial to balance development and ecosystem preservation. This 

underscores the need for a systematic framework that integrates advanced technologies with 

sustainable practices, ensuring long-term viability without compromising RI performance. 

9.2 Recommendations for RIs 

To ensure the sustainability of RIs, immediate actions should focus on implementing energy-efficient 

technologies, such as renewable energy sources and advanced cooling systems, and adopting green 

infrastructure practices to reduce environmental impact, as highlighted by Kumar et al. Existing RIs 

must also enhance data management frameworks, integrating federated solutions to optimize 

resource use and reduce redundancies. For long-term strategic directions, the paper [41] proposes 
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adopting sustainable architectural design principles, which include lifecycle-oriented planning, 

modularity, and scalability to support evolving technological needs while minimizing waste. 

Policies should prioritize funding mechanisms that incentivize green innovations, such as nature-based 

solutions and low-impact development strategies, alongside fostering international collaboration to 

share expertise and resources. Regulatory frameworks must emphasize compliance with sustainability 

standards and promote training programs for personnel to address skill gaps in managing complex, 

sustainable RI systems. These steps are essential to position RIs as leaders in sustainable development 

and as contributors to global ecological resilience. 

9.3 GenAI impact on energy efficiency 

GenAI has emerged as a transformative technology with significant implications for energy efficiency 

in data centres and broader energy systems [56]. The immense computational demands of GenAI 

models, such as training and inference for LLMs, require energy-intensive infrastructure. For instance, 

the energy consumption of a single training session for a large model can exceed the annual electricity 

use of multiple households. To address this challenge, we need to investigate systematically energy 

impact of GenAI models on infrastructures [57].  Companies like Hitachi are integrating renewable 

energy sources, energy storage systems, and smart grid technologies to power data centres 

sustainably, ensuring resilience and efficiency in energy consumption. 

Moreover, GenAI itself offers tools for optimizing energy systems. As highlighted by recent research, 

GenAI can enhance energy harvesting technologies in wireless networks, improving resource 

allocation, network deployment, and real-time energy management [56]. Applications such as UAV-

assisted energy transfer and renewable energy forecasting demonstrate the role of GenAI in creating 

dynamic, adaptive systems capable of balancing energy generation and consumption. These 

capabilities enable the reduction of carbon footprints and operational costs while maintaining high 

performance. 

To fully realize sustainable GenAI applications, it is essential to align the development of AI models 

with green computing principles, leveraging energy-efficient hardware and algorithms. Additionally, 

policies must support investments in renewable energy and the integration of AI-driven solutions in 

energy management to minimize the environmental impact of this transformative technology. This 

multifaceted approach ensures that GenAI contributes not only to technological advancement but also 

to global sustainability goals. 
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10 Conclusion and Future Work 

The GreenDIGIT project has provided a comprehensive SotA assessment of sustainability in RIs and 

digital infrastructure. This report has explored various aspects of energy-efficient computing, carbon-

aware scheduling, green software design, and sustainable data management, highlighting the need for 

integrated solutions to reduce the environmental footprint of digital infrastructures. 

The findings emphasize that sustainability in RIs is no longer optional - it is a necessary shift toward 

more energy-conscious digital operations. RIs must adopt a multi-layered approach that combines 

energy-efficient hardware, optimized workload scheduling, sustainable software practices, and 

responsible data management. The implementation of carbon-aware computing, as demonstrated by 

leading industry and research initiatives, showcases the potential of intelligent resource allocation to 

minimize carbon emissions while maintaining performance. 

Despite the progress made in energy-efficient computing solutions, several challenges remain. The 

adoption of sustainability metrics and standardization across federated computing infrastructures 

requires further refinement. Additionally, the integration of ML and AI-driven optimizations for energy-

aware scheduling is still an emerging field, with potential trade-offs between computational efficiency 

and sustainability that need to be further analysed. 

The outcome of the presented State of the Art will provide the background for  future research within 

the GreenDIGIT project that will focus on developing and validating prototype solutions that 

incorporate real-time energy monitoring, automated sustainability reporting, and federated workload 

scheduling strategies. The project will also investigate data lifecycle management techniques to reduce 

redundant data transfers and improve energy efficiency and sustainability of the  DMI and distributed 

storage systems. 

To support the practical implementation of these findings, GreenDIGIT will collaborate with research 

institutions, universities, industry stakeholders, cloud providers to ensure that sustainable practices 

become an integral part of digital infrastructure design. Additionally, efforts will be made to develop 

training programs for research communities, raising awareness about the environmental impact of 

computing and equipping researchers with tools for greener digital practices. 

Ultimately, the goal is to position European RIs at the forefront of sustainable computing. By leveraging 

carbon-aware computing, energy-efficient software development, and optimized data workflows, 

GreenDIGIT aims to create a scalable framework for the next generation of environmentally 

responsible RIs. 
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